ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data

112   0   0.0 ( 0 )
 نشر من قبل Laura Baudis
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with 129-Xe and 131-Xe nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV, with a minimum cross section of 3.5 x 10^{-40} cm^2 at a WIMP mass of 45 GeV, at 90% confidence level.



قيم البحث

اقرأ أيضاً

We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso (LNGS) for 13 months during 2011 and 2012. XENON100 features an ultra-low electromagnetic background of (5.3 pm 0.6) time s 10^-3 events (kg day keVee)^-1 in the energy region of interest. A blind analysis of 224.6 live days times 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the pre-defined nuclear recoil energy range of 6.6-30.5 keVnr are consistent with the background expectation of (1.0 pm 0.2) events. A Profile Likelihood analysis using a 6.6-43.3 keVnr energy range sets the most stringent limit on the spin-independent elastic WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c^2, with a minimum of 2 times 10^-45 cm^2 at 55 GeV/c^2 and 90% confidence level.
284 - J. Angle , E. Aprile , F. Arneodo 2008
XENON10 is an experiment to directly detect weakly interacting massive particle (WIMPs), which may comprise the bulk of the non-baryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129-Xe and 1 31-Xe from 58.6 live-days of operation at the Laboratori Nazionali del Gran Sasso (LNGS). Based on the non-observation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of 10 GeV -2 TeV as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.
We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of $6.3times10^{-42}$ cm$^2$ at 30 GeV/c${}^2$ and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.
We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time projection chamber with a 62 kg liquid xenon target. I nteraction vertex reconstruction in three dimensions with millimeter precision allows to select only the innermost 48 kg as ultra-low background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in a pre-defined signal region with an expected background of 1.8 +/- 0.6 events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic WIMP-nucleon scattering cross-sections above 7.0x10^-45 cm^2 for a WIMP mass of 50 GeV/c^2 at 90% confidence level.
The XENON100 experiment has recently completed a dark matter run with 100.9 live-days of data, taken from January to June 2010. Events in a 48kg fiducial volume in the energy range between 8.4 and 44.6 keVnr have been analyzed. A total of three event s have been found in the predefined signal region, compatible with the background prediction of (1.8 pm 0.6) events. Based on this analysis we present limits on the WIMP-nucleon cross section for inelastic dark matter. With the present data we are able to rule out the explanation for the observed DAMA/LIBRA modulation as being due to inelastic dark matter scattering off iodine at a 90% confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا