ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications on Inelastic Dark Matter from 100 Live Days of XENON100 Data

97   0   0.0 ( 0 )
 نشر من قبل Antonio J Melgarejo Fernandez
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The XENON100 experiment has recently completed a dark matter run with 100.9 live-days of data, taken from January to June 2010. Events in a 48kg fiducial volume in the energy range between 8.4 and 44.6 keVnr have been analyzed. A total of three events have been found in the predefined signal region, compatible with the background prediction of (1.8 pm 0.6) events. Based on this analysis we present limits on the WIMP-nucleon cross section for inelastic dark matter. With the present data we are able to rule out the explanation for the observed DAMA/LIBRA modulation as being due to inelastic dark matter scattering off iodine at a 90% confidence level.



قيم البحث

اقرأ أيضاً

We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time projection chamber with a 62 kg liquid xenon target. I nteraction vertex reconstruction in three dimensions with millimeter precision allows to select only the innermost 48 kg as ultra-low background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in a pre-defined signal region with an expected background of 1.8 +/- 0.6 events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic WIMP-nucleon scattering cross-sections above 7.0x10^-45 cm^2 for a WIMP mass of 50 GeV/c^2 at 90% confidence level.
We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso (LNGS) for 13 months during 2011 and 2012. XENON100 features an ultra-low electromagnetic background of (5.3 pm 0.6) time s 10^-3 events (kg day keVee)^-1 in the energy region of interest. A blind analysis of 224.6 live days times 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the pre-defined nuclear recoil energy range of 6.6-30.5 keVnr are consistent with the background expectation of (1.0 pm 0.2) events. A Profile Likelihood analysis using a 6.6-43.3 keVnr energy range sets the most stringent limit on the spin-independent elastic WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c^2, with a minimum of 2 times 10^-45 cm^2 at 55 GeV/c^2 and 90% confidence level.
We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorde d between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 times 10^{-3}$ events/(keV$_{mathrm{ee}}times$kg$times$day) before electronic recoil rejection, together with the increased exposure of 48 kg $times$ yr improves the sensitivity. A profile likelihood analysis using an energy range of (6.6 - 43.3) keV$_{mathrm{nr}}$ sets a limit on the elastic, spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/$c^2$, with a minimum of 1.1 $times 10^{-45}$ cm$^2$ at 50 GeV/$c^2$ and 90% confidence level. We also report updated constraints on the elastic, spin-dependent WIMP-nucleon cross sections obtained with the same data. We set upper limits on the WIMP-neutron (proton) cross section with a minimum of 2.0 $times 10^{-40}$ cm$^2$ (52$times 10^{-40}$ cm$^2$) at a WIMP mass of 50 GeV/$c^2$, at 90% confidence level.
We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with 129-Xe and 131-Xe nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV, with a minimum cross section of 3.5 x 10^{-40} cm^2 at a WIMP mass of 45 GeV, at 90% confidence level.
We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of mag netic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMPs magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c$^2$ and 122.7 GeV/c$^2$ are excluded at 3.3 $sigma$ and 9.3 $sigma$, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا