ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Observation of Quantum Holographic Imaging

341   0   0.0 ( 0 )
 نشر من قبل Kaige Wang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first experimental observation of quantum holographic imaging with entangled photon pairs, generated in a spontaneous parametric down-conversion process. The signal photons play both roles of object wave and reference wave in holography but are recorded by a point detector providing only encoding information, while the idler photons travel freely and are locally manipulated with spatial resolution. The holographic image is formed by the two-photon correlation measurement, although both the signal and idler beams are incoherent. According to the detection regime of the signal photons, we analyze three types of quantum holography schemes: point detection, coherent detection and bucket detection, which can correspond to classical holography using a point source, a plane-wave coherent source and a spatially incoherent source, respectively. Our experiment demonstrates that the two-photon holography in the point detection regime is equivalent to the one-photon holography using a point source. Physically, the quantum holography experiment verifies that a pair of non-commutable physical quantities, the amplitude and phase components of the field operator, can be nonlocally measured through two-photon entanglement.



قيم البحث

اقرأ أيضاً

121 - Mu Yang , Qiang Li , Zheng-Hao Liu 2019
Weak measurement has been shown to play important roles in the investigation of both fundamental and practical problems. Anomalous weak values are generally believed to be observed only when post-selection is performed, i.e, only a particular subset of the data is considered. Here, we experimentally demonstrated an anomalous weak value can be obtained without discarding any data by performing a sequential weak measurement on a single-qubit system. By controlling the blazing density of the hologram on a spatial light modulator, the measurement strength can be conveniently controlled. Such an anomalous phenomenon disappears when the measurement strength becomes strong. Moreover, we find that the anomalous weak value can not be observed without post-selection when the sequential measurement is performed on each of the components of a two-qubit system, which confirms that the observed anomalous weak value is based on sequential weak measurement of two noncommutative operators.
Contextuality is a fundamental property of quantum theory and a critical resource for quantum computation. Here, we experimentally observe the arguably cleanest form of contextuality in quantum theory [A. Cabello emph{et al.}, Phys. Rev. Lett. textbf {111}, 180404 (2013)] by implementing a novel method for performing two sequential measurements on heralded photons. This method opens the door to a variety of fundamental experiments and applications.
Since Bells theorem, it is known that the concept of local realism fails to explain quantum phenomena. Indeed, the violation of a Bell inequality has become a synonym of the incompatibility of quantum theory with our classical notion of cause and eff ect. As recently discovered, however, the instrumental scenario -- a tool of central importance in causal inference -- allows for signatures of nonclassicality that do not hinge on this paradigm. If, instead of relying on observational data only, we can also intervene in our experimental setup, quantum correlations can violate classical bounds on the causal influence even in scenarios where no violation of a Bell inequality is ever possible. That is, through interventions, we can witness the quantum behaviour of a system that would look classical otherwise. Using a photonic setup -- faithfully implementing the instrumental causal structure and allowing to switch between the observational and interventional modes in a run to run basis -- we experimentally observe this new witness of nonclassicality for the first time. In parallel, we also test quantum bounds for the causal influence, showing that they provide a reliable tool for quantum causal modelling.
The protocol of quantum reading refers to the quantum enhanced retrieval of information from an optical memory, whose generic cell stores a bit of information in two possible lossy channels. In the following we analyze the case of a particular class of optical receiver, based on photon counting measurement, since they can be particularly simple in view of real applications. We show that a quantum advantage is achievable when a transmitter based on two-mode squeezed vacuum (TMSV) states is combined with a photon counting receiver, and we experimentally confirm it. In this paper, after introducing some theoretical background, we focus on the experimental realisation, describing the data collection and the data analysis in detail.
We show that it is possible to estimate the shape of an object by measuring only the fluctuations of a probing field, allowing us to expose the object to a minimal light intensity. This scheme, based on noise measurements through homodyne detection, is useful in the regime where the number of photons is low enough that direct detection with a photodiode is difficult but high enough such that photon counting is not an option. We generate a few-photon state of multi-spatial-mode vacuum-squeezed twin beams using four-wave mixing and direct one of these twin fields through a binary intensity mask whose shape is to be imaged. Exploiting either the classical fluctuations in a single beam or quantum correlations between the twin beams, we demonstrate that under some conditions quantum correlations can provide an enhancement in sensitivity when estimating the shape of the object.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا