ﻻ يوجد ملخص باللغة العربية
A Cooper pair insulator (CPI) phase emerges near the superconductor-insulator transitions of a number of strongly-disordered thin film systems. Much recent study has focused on a mechanism driving the underlying Cooper pair localization. We present data showing that a CPI phase develops in amorphous Pb$_{0.9}$Bi$_{0.1}$ films deposited onto nano-porous anodized aluminum oxide surfaces just as it has been shown to develop for a-Bi films. This result confirms the assertion that the CPI phase emerges due to the structure of the substrate. It supports the picture that nanoscale film thickness variations induced by the substrate drive the localization. Moreover, it implies that the CPI phase can be induced in any superconducting material that can be deposited onto this surface.
Unusual transport properties of superconducting (SC) materials, such as the under doped cuprates, low dimensional superconductors in strong magnetic fields, and insulating films near the Insulator Superconductor Transition (IST), have been attributed
We apply a recently-developed low-field technique to inductively measure the critical pair momentum $p_c$ in thin, underdoped films of Y$_{1-x}$Ca$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-delta}$ and Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ reflecting a wide range
We conducted a systematic study of the disorder dependence of the termination of superconductivity, at high magnetic fields (B), of amorphous indium oxide films. Our lower disorder films show conventional behavior where superconductivity is terminate
We first review evidence for the Cooper pair insulator (CPI) phase in amorphous nanohoneycomb (NHC) films. We then extend our analysis of superconducting islands induced by film thickness variations in NHC films to examine the evolution of island siz
Vortex dynamics in superconductors have received a great deal of attention from both fundamental and applied researchers over the past few decades. Because of its critical role in the energy relaxation process of type-II superconductors, vortex dynam