ﻻ يوجد ملخص باللغة العربية
We first review evidence for the Cooper pair insulator (CPI) phase in amorphous nanohoneycomb (NHC) films. We then extend our analysis of superconducting islands induced by film thickness variations in NHC films to examine the evolution of island sizes through the magnetic field-driven SIT. Finally, using the islanding picture, we present a plausible model for the appearance and behavior of the CPI phase in amorphous NHC films.
The preformed-pairs theory of pseudogap physics in high-$T_C$ superconductors predicts a nonanalytic $T$-dependence for the $ab$-plane superfluid fraction, $rho_S$, at low temperatures in underdoped cuprates. We report high-precision measurements of
We apply a recently-developed low-field technique to inductively measure the critical pair momentum $p_c$ in thin, underdoped films of Y$_{1-x}$Ca$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-delta}$ and Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ reflecting a wide range
Unusual transport properties of superconducting (SC) materials, such as the under doped cuprates, low dimensional superconductors in strong magnetic fields, and insulating films near the Insulator Superconductor Transition (IST), have been attributed
A Cooper pair insulator (CPI) phase emerges near the superconductor-insulator transitions of a number of strongly-disordered thin film systems. Much recent study has focused on a mechanism driving the underlying Cooper pair localization. We present d
The advent of quantum optical techniques based on superconducting circuits has opened new regimes in the study of the non-linear interaction of light with matter. Of particular interest has been the creation of non-classical states of light, which ar