ترغب بنشر مسار تعليمي؟ اضغط هنا

Unzipping graphene: Extendend defects by ion irradiation

148   0   0.0 ( 0 )
 نشر من قبل Marika Schleberger Y
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many of the proposed future applications of graphene require the controlled introduction of defects into its perfect lattice. Energetic ions provide one way of achieving this challenging goal. Single heavy ions with kinetic energies in the 100 MeV range will produce nanometer-sized defects on dielectric but generally not on crystalline metal surfaces. In a metal the ion-induced electronic excitations are efficiently dissipated by the conduction electrons before the transfer of energy to the lattice atoms sets in. Therefore, graphene is not expected to be irradiation sensitive beyond the creation of point defects. Here we show that graphene on a dielectric substrate sustains major modifications if irradiated under oblique angles. Due to a combination of defect creation in the graphene layer and hillock creation in the substrate, graphene is split and folded along the ion track yielding double layer nanoribbons. Our results indicate that the radiation hardness of graphene devices is questionable but also open up a new way of introducing extended low-dimensional defects in a controlled way.



قيم البحث

اقرأ أيضاً

We show that the work function of exfoliated single layer graphene can be modified by irradiation with swift (E_{kin}=92 MeV) heavy ions under glancing angles of incidence. Upon ion impact individual surface tracks are created in graphene on SiC. Due to the very localized energy deposition characteristic for ions in this energy range, the surface area which is structurally altered is limited to ~ 0.01 mum^2 per track. Kelvin probe force microscopy reveals that those surface tracks consist of electronically modified material and that a few tracks suffice to shift the surface potential of the whole single layer flake by ~ 400 meV. Thus, the irradiation turns the initially n-doped graphene into p-doped graphene with a hole density of 8.5 x 10^{12} holes/cm^2. This doping effect persists even after heating the irradiated samples to 500{deg}C. Therefore, this charge transfer is not due to adsorbates but must instead be attributed to implanted atoms. The method presented here opens up a new way to efficiently manipulate the charge carrier concentration of graphene.
As impermeable to gas molecules and at the same time transparent to high-energy ions, graphene has been suggested as a window material for separating a high-vacuum ion beam system from targets kept at ambient conditions. However, accumulation of irra diation-induced damage in the graphene membrane may give rise to its mechanical failure. Using atomistic simulations, we demonstrate that irradiated graphene even with a high vacancy concentration does not show signs of such instability, indicating a considerable robustness of graphene windows. We further show that upper and lower estimates for the irradiation damage in graphene can be set using a simple model.
In this paper we show how single layer graphene can be utilized to study swift heavy ion (SHI) modifications on various substrates. The samples were prepared by mechanical exfoliation of bulk graphite onto SrTiO$_3$, NaCl and Si(111), respectively. S HI irradiations were performed under glancing angles of incidence and the samples were analysed by means of atomic force microscopy in ambient conditions. We show that graphene can be used to check whether the irradiation was successful or not, to determine the nominal ion fluence and to locally mark SHI impacts. In case of samples prepared in situ, graphene is shown to be able to catch material which would otherwise escape from the surface.
The delafossite metals PdCoO$_{2}$, PtCoO$_{2}$ and PdCrO$_{2}$ are among the highest conductivity materials known, with low temperature mean free paths of tens of microns in the best as-grown single crystals. A key question is whether these very low resistive scattering rates result from strongly suppressed backscattering due to special features of the electronic structure, or are a consequence of highly unusual levels of crystalline perfection. We report the results of experiments in which high energy electron irradiation was used to introduce point disorder to the Pd and Pt layers in which the conduction occurs. We obtain the cross-section for formation of Frenkel pairs in absolute units, and cross-check our analysis with first principles calculations of the relevant atomic displacement energies. We observe an increase of resistivity that is linear in defect density with a slope consistent with scattering in the unitary limit. Our results enable us to deduce that the as-grown crystals contain extremely low levels of in-plane defects of approximately $0.001%$. This confirms that crystalline perfection is the most important factor in realizing the long mean free paths, and highlights how unusual these delafossite metals are in comparison with the vast majority of other multi-component oxides and alloys. We discuss the implications of our findings for future materials research.
Regular arrays of InP nano pillars have been fabricated by low energy Electron Cyclotron Resonance (ECR) Ar+ ion irradiation on InP(111) surface. Several scanning electron microscopy (SEM) images have been utilized to invetsigate the width, height, a nd orientation of these nano pillars on InP(111) surfaces. The average width and length of these nano-pillars are about 50 nm and 500 nm, respectively. The standing angle with respect to the surface of the nano-pillars depend on the incidence angle of the Ar ion irradiation during the fabrication process. Interestingly, the growth direction of the nano pillars are along the reflection direction of the ion beam and the standing angles are nearly same as the ion incidence angle with the surface normal. This nano-pillas are easily transferred from the InP surface to double sided carbon tape without any damage. High Resolution Transmission Electron Microscopy (HRTEM) study of single nano-pillar reveals that this nano-pillar are almost crystalline in nature except 2-4 nm amorphous layer on the outer surface. The transmission electron microscopy combined with energy-dispersive x-ray spectroscopy (TEM-EDS) analysis of these nano pillars exhibit that the ratio of In and P is little higher compared to the bulk InP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا