ﻻ يوجد ملخص باللغة العربية
Loop corrections to observables in slow-roll inflation are found to diverge no worse than powers of the log of the scale factor, extending Weinbergs theorem to quasi-single field inflation models. Demanding perturbation theory be valid during primordial inflation leads to constraints on the effective lagrangian. This leads to some interesting constraints and coincidences on the landscape of inflationary vacua.
We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation
The recently introduced swampland criterion for de Sitter (arXiv:1806.08362) can be viewed as a (hierarchically large) bound on the smallness of the slow roll parameter $epsilon_V$. This leads us to consider the other slow roll parameter $eta_V$ more
Brief periods of non-slow-roll evolution during inflation can produce interesting observable consequences, as primordial black holes, or an inflationary gravitational wave spectrum enhanced at small scales. We develop a model independent, analytic ap
The ultra-slow-roll (USR) inflation represents a class of single-field models with sharp deceleration of the rolling dynamics on small scales, leading to a significantly enhanced power spectrum of the curvature perturbations and primordial black hole
We investigate the chaotic inflationary model using the two-loop effective potential of a self-interacting scalar field theory in curved spacetime. We use the potential which contains a non-minimal scalar curvature coupling and a quartic scalar self-