ﻻ يوجد ملخص باللغة العربية
Heralded single photon source (HSPS) is an important way in generating genuine single photon, having advantages of experimental simplicity and versatility. However, HSPS intrinsically suffers from the trade-off between the heralded single photon rate and the single photon purity. To overcome this, one can apply multiplexing technology in different degrees of freedom to enhance the performance of HSPS. Here, by employing spectral multiplexing and active feed-forward spectral manipulating, we demonstrate a HSPS at 1.5 {mu}m telecom-band. Our experimental results show that the spectral multiplexing effectively erases the frequency correlation of pair source and significantly improves the heralded single photon rate while keeping the g{^(^2^)}(0) as low as 0.0006{pm}0.0001. The Hong-Ou-Mandel interference between the heralded single photons and photons from an independent weak coherent source indicates a high indistinguishability. Our results pave a way for scalable HSPS by spectral multiplexing towards deterministic single photon emission.
The realization of an ultra-fast source of heralded single photons emitted at the wavelength of 1540 nm is reported. The presented strategy is based on state-of-the-art telecom technology, combined with off-the-shelf fiber components and waveguide no
Single-photon stimulated four wave mixing (StFWM) processes have great potential for photonic quantum information processing, compatible with optical communication technologies and integrated optoelectronics. In this paper, we demonstrate single-phot
The frequency correlation (or decorrelation) of photon pairs is of great importance in long-range quantum communications and photonic quantum computing. We experimentally characterize a spontaneous parametric down conversion (SPDC) source, based on a
Current proposals for scalable photonic quantum technologies require on-demand sources of indistinguishable single photons with very high efficiency (having unheralded loss below $1%$). Even with recent progress in the field there is still a signific
Single-photon sources are set to be a fundamental tool for metrological applications as well as for quantum information related technologies. Because of their upcoming widespread dissemination, the need for their characterization and standardization