ﻻ يوجد ملخص باللغة العربية
XMASS, a low-background, large liquid-xenon detector, was used to search for solar axions that would be produced by bremsstrahlung and Compton effects in the Sun. With an exposure of 5.6ton days of liquid xenon, the model-independent limit on the coupling for mass $ll$ 1keV is $|g_{aee}|< 5.4times 10^{-11}$ (90% C.L.), which is a factor of two stronger than the existing experimental limit. The bounds on the axion masses for the DFSZ and KSVZ axion models are 1.9 and 250eV, respectively. In the mass range of 10-40keV, this study produced the most stringent limit, which is better than that previously derived from astrophysical arguments regarding the Sun to date.
A search for dark matter (DM) with mass in the sub-GeV region (0.32-1 GeV) was conducted by looking for an annual modulation signal in XMASS, a single-phase liquid xenon detector. Inelastic nuclear scattering accompanied by bremsstrahlung emission wa
A search for light dark matter using low-threshold data from the single phase liquid xenon scintillation detector XMASS, has been conducted. Using the entire 835 kg inner volume as target, the analysis threshold can be lowered to 0.3 keVee (electron-
Bosonic superweakly interacting massive particles (super-WIMPs) are a candidate for warm dark matter. With the absorption of such a boson by a xenon atom these dark matter candidates would deposit an energy equivalent to their rest mass in the detect
We report an in-situ measurement of the nuclear recoil (NR) scintillation decay time constant in liquid xenon (LXe) using the XMASS-I detector at the Kamioka underground laboratory in Japan. XMASS-I is a large single-phase LXe scintillation detector
A search for dark matter was conducted by looking for an annual modulation signal due to the Earths rotation around the Sun using XMASS, a single phase liquid xenon detector. The data used for this analysis was 359.2 live days times 832 kg of exposur