ﻻ يوجد ملخص باللغة العربية
A search for dark matter was conducted by looking for an annual modulation signal due to the Earths rotation around the Sun using XMASS, a single phase liquid xenon detector. The data used for this analysis was 359.2 live days times 832 kg of exposure accumulated between November 2013 and March 2015. When we assume Weakly Interacting Massive Particle (WIMP) dark matter elastically scattering on the target nuclei, the exclusion upper limit of the WIMP-nucleon cross section 4.3$times$10$^{-41}$cm$^2$ at 8 GeV/c$^2$ was obtained and we exclude almost all the DAMA/LIBRA allowed region in the 6 to 16 GeV/c$^2$ range at $sim$10$^{-40}$cm$^2$. The result of a simple modulation analysis, without assuming any specific dark matter model but including electron/$gamma$ events, showed a slight negative amplitude. The $p$-values obtained with two independent analyses are 0.014 and 0.068 for null hypothesis, respectively. we obtained 90% C.L. upper bounds that can be used to test various models. This is the first extensive annual modulation search probing this region with an exposure comparable to DAMA/LIBRA.
An annual modulation signal due to the Earth orbiting around the Sun would be one of the strongest indications of the direct detection of dark matter. In 2016, we reported a search for dark matter by looking for this annual modulation with our single
A search for dark matter (DM) with mass in the sub-GeV region (0.32-1 GeV) was conducted by looking for an annual modulation signal in XMASS, a single-phase liquid xenon detector. Inelastic nuclear scattering accompanied by bremsstrahlung emission wa
A search for dark matter using an underground single-phase liquid xenon detector was conducted at the Kamioka Observatory in Japan, particularly for Weakly Interacting Massive Particles (WIMPs). We have used 705.9 live days of data in a fiducial volu
Bosonic superweakly interacting massive particles (super-WIMPs) are a candidate for warm dark matter. With the absorption of such a boson by a xenon atom these dark matter candidates would deposit an energy equivalent to their rest mass in the detect
Weakly Interacting Massive Particles (WIMPs) are well-established dark matter candidates. WIMP interactions with sensitive detectors are expected to display a characteristic annual modulation in rate. We release a dataset spanning 3.4 years of operat