ﻻ يوجد ملخص باللغة العربية
Interlayer tunneling in graphite mesa-type structures is studied at a strong in-plane magnetic field $H$ up to 55 T and low temperature $T=1.4$ K. The tunneling spectrum $dI/dV$ vs. $V$ has a pronounced peak at a finite voltage $V_0$. The peak position $V_0$ increases linearly with $H$. To explain the experiment, we develop a theoretical model of graphite in the crossed electric $E$ and magnetic $H$ fields. When the fields satisfy the resonant condition $E=vH$, where $v$ is the velocity of the two-dimensional Dirac electrons in graphene, the wave functions delocalize and give rise to the peak in the tunneling spectrum observed in the experiment.
We perform an optical spectroscopy study to investigate the properties of different artificial MoS$_2$ bi- and trilayer stacks created from individual monolayers by a deterministic transfer process. These twisted bi- and trilayers differ from the com
Magneto-transmission measurements in magnetic fields in the range B=20-60T have been performed to probe the H and K-point Landau level transitions in natural graphite. At the H-point, two series of transitions, whose energy evolves as $sqrt{B}$ are o
Despite interlayer binding energy is one of the most important material properties for graphite, there is still lacking report on its direct experimental determination. In this paper, we present a novel experimental method to directly measure the int
The ground-state electronic configuration of three coupled bidimensional electron gases has been determined using a variational Hartree-Fock approach, at zero magnetic field. The layers are Coulomb coupled, and tunneling is present between neighborin
We measured the electronic local density of states (LDOS) of graphite surfaces near monoatomic step edges, which consist of either the zigzag or armchair edge, with the scanning tunneling microscopy (STM) and spectroscopy (STS) techniques. The STM da