ترغب بنشر مسار تعليمي؟ اضغط هنا

MegaMorph - multi-wavelength measurement of galaxy structure: complete Sersic profile information from modern surveys

159   0   0.0 ( 0 )
 نشر من قبل Boris Haeussler
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we demonstrate a new method for fitting galaxy profiles which makes use of the full multi-wavelength data provided by modern large optical-near-infrared imaging surveys. We present a new version of GALAPAGOS, which utilises a recently-developed multi-wavelength version of GALFIT, and enables the automated measurement of wavelength dependent Sersic profile parameters for very large samples of galaxies. Our new technique is extensively tested to assess the reliability of both pieces of software, GALFIT and GALAPAGOS on both real ugrizY JHK imaging data from the GAMA survey and simulated data made to the same specifications. We find that fitting galaxy light profiles with multi-wavelength data increases the stability and accuracy of the measured parameters, and hence produces more complete and meaningful multi-wavelength photometry than has been available previously. The improvement is particularly significant for magnitudes in low S/N bands and for structural parameters like half-light radius re and Sersic index n for which a prior is used by constraining these parameters to a polynomial as a function of wavelength. This allows the fitting routines to push the magnitude of galaxies for which sensible values can be derived to fainter limits. The technique utilises a smooth transition of galaxy parameters with wavelength, creating more physically meaningful transitions than single-band fitting and allows accurate interpolation between passbands, perfect for derivation of rest-frame values.



قيم البحث

اقرأ أيضاً

Aims. This work investigates the potential of using the wavelength-dependence of galaxy structural parameters (Sersic index, n, and effective radius, Re) to separate galaxies into distinct types. Methods. A sample of nearby galaxies with reliable vis ual morphologies is considered, for which we measure structural parameters by fitting multi-wavelength single-Sersic models. Additionally, we use a set of artificially redshifted galaxies to test how these classifiers behave when the signal-to-noise decreases. Results. We show that the wavelength-dependence of n may be employed to separate visually-classified early- and late-type galaxies, in a manner similar to the use of colour and n. Furthermore, we find that the wavelength variation of n can recover galaxies that are misclassified by these other morphological proxies. Roughly half of the spiral galaxies that contaminate an early-type sample selected using (u-r) versus n can be correctly identified as late-types by N, the ratio of n measured in two different bands. Using a set of artificially-redshifted images, we show that this technique remains effective up to z ~ 0.1. N can therefore be used to achieve purer samples of early-types and more complete samples of late-types than using a colour-n cut alone. We also study the suitability of R, the ratio of Re in two different bands, as a morphological classifier, but find that the average sizes of both early- and late-type galaxies do not change substantially over optical wavelengths.
428 - Julien Carron 2014
A large fraction of this thesis is dedicated to the study of the information content of random fields with heavy tails, in particular the lognormal field, a model for the matter density fluctuation field. It is well known that in the nonlinear regime of structure formation, the matter fluctuation field develops such large tails. It has also been suggested that fields with large tails are not necessarily well described by the hierarchy of $N$-point functions. In this thesis, we are able to make this last statement precise and with the help of the lognormal model to quantify precisely its implications for inference on cosmological parameters : we find as our main result that only a tiny fraction of the total Fisher information of the field is still contained in the hierarchy of $N$-point moments in the nonlinear regime, rendering parameter inference from such moments very inefficient. We show that the hierarchy fails to capture the information that is contained in the underdense regions, which at the same time are found to be the most rich in information. We find further our results to be very consistent with numerical analysis using $N$-body simulations. We also discuss these issues with the help of explicit families of fields with the same hierarchy of $N$-point moments defined in this work. A similar analysis is then applied to the convergence field, the weighted projection of the matter density fluctuation field along the line of sight, with similar conclusions. We also show how simple mappings can correct for this inadequacy, consistently with previous findings in the literature (Abridged) .
We develop a novel method to extract key cosmological information, which is primarily carried by the baryon acoustic oscillations (BAO) and redshift space distortions (RSD), from spectroscopic galaxy surveys, based on a joint principal component anal ysis (PCA) and Karhunen-Lo`eve (KL) data compression scheme. Comparing to the traditional methods using the multipoles or wedges of the galaxy correlation functions, we find that our method is able to extract the key information more efficiently, with a better control of the potential systematics, which manifests it as a powerful tool for clustering analysis for ongoing and forthcoming galaxy surveys.
We present a large-scale Bayesian inference framework to constrain cosmological parameters using galaxy redshift surveys, via an application of the Alcock-Paczynski (AP) test. Our physical model of the non-linearly evolved density field, as probed by galaxy surveys, employs Lagrangian perturbation theory (LPT) to connect Gaussian initial conditions to the final density field, followed by a coordinate transformation to obtain the redshift space representation for comparison with data. We generate realizations of primordial and present-day matter fluctuations given a set of observations. This hierarchical approach encodes a novel AP test, extracting several orders of magnitude more information from the cosmological expansion compared to classical approaches, to infer cosmological parameters and jointly reconstruct the underlying 3D dark matter density field. The novelty of this AP test lies in constraining the comoving-redshift transformation to infer the appropriate cosmology which yields isotropic correlations of the galaxy density field, with the underlying assumption relying purely on the cosmological principle. Such an AP test does not rely explicitly on modelling the full statistics of the field. We verify in depth via simulations that this renders our test robust to model misspecification. This leads to another crucial advantage, namely that the cosmological parameters exhibit extremely weak dependence on the currently unresolved phenomenon of galaxy bias, thereby circumventing a potentially key limitation. This is consequently among the first methods to extract a large fraction of information from statistics other than that of direct density contrast correlations, without being sensitive to the amplitude of density fluctuations. We perform several statistical efficiency and consistency tests on a mock galaxy catalogue, using the SDSS-III survey as template.
A heuristic greedy algorithm is developed for efficiently tiling spatially dense redshift surveys. In its first application to the Galaxy and Mass Assembly (GAMA) redshift survey we find it rapidly improves the spatial uniformity of our data, and nat urally corrects for any spatial bias introduced by the 2dF multi object spectrograph. We make conservative predictions for the final state of the GAMA redshift survey after our final allocation of time, and can be confident that even if worse than typical weather affects our observations, all of our main survey requirements will be met.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا