ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2.35 year itch of Cyg OB2 #9. II. Radio monitoring

160   0   0.0 ( 0 )
 نشر من قبل Ronny Blomme
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cyg OB2 #9 is one of a small set of non-thermal radio emitting massive O-star binaries. The non-thermal radiation is due to synchrotron emission in the colliding-wind region. Cyg OB2 #9 was only recently discovered to be a binary system and a multi-wavelength campaign was organized to study its 2011 periastron passage. We report here on the results of the radio observations obtained in this monitoring campaign. We used the Expanded Very Large Array (EVLA) radio interferometer to obtain 6 and 20 cm continuum fluxes. The observed radio light curve shows a steep drop in flux sometime before periastron. The fluxes drop to a level that is comparable to the expected free-free emission from the stellar winds, suggesting that the non-thermal emitting region is completely hidden at that time. After periastron passage, the fluxes slowly increase. We introduce a simple model to solve the radiative transfer in the stellar winds and the colliding-wind region, and thus determine the expected behaviour of the radio light curve. From the asymmetry of the light curve, we show that the primary has the stronger wind. This is somewhat unexpected if we use the astrophysical parameters based on theoretical calibrations. But it becomes entirely feasible if we take into account that a given spectral type - luminosity class combination covers a range of astrophysical parameters. The colliding-wind region also contributes to the free-free emission, which can help to explain the high values of the spectral index seen after periastron passage. Combining our data with older Very Large Array (VLA) data allows us to derive a period P = 860.0 +- 3.7 days for this system. With this period, we update the orbital parameters that were derived in the first paper of this series.



قيم البحث

اقرأ أيضاً

X-ray and radio data recently acquired as part of a project to study Cyg OB2#9 are used to constrain physical models of the binary system, providing in-depth knowledge about the wind-wind collision and the thermal, and non-thermal, emission arising f rom the shocks. We use a three-dimensional, adaptive mesh refinement simulation (including wind acceleration, radiative cooling, and the orbital motion of the stars) to model the gas dynamics of the wind-wind collision. The simulation output is used as the basis for radiative transfer calculations considering the thermal X-ray emission and the thermal/non-thermal radio emission. To obtain good agreement with the X-ray observations, our initial mass-loss rate estimates require a down-shift by a factor of roughly 7.7 to $6.5times10^{-7}$ and $7.5times10^{-7}$ solar mass per year for the primary and secondary star, respectively. Furthermore, the low gas densities and high shock velocities in Cyg OB2#9 are suggestive of unequal electron and ion temperatures, and the X-ray analysis indicates that an (immediately post-shock) electron-ion temperature ratio of $simeq 0.1$ is also required. The radio emission is dominated by (non-thermal) synchrotron emission. A parameter space exploration provides evidence against models assuming equipartition between magnetic and relativistic energy densities. However, fits of comparable quality can be attained with models having stark contrasts in the ratio of magnetic-to-relativistic energy densities. The radio models also reveal a subtle effect whereby inverse Compton cooling leads to an increase in emissivity as a result of the synchrotron characteristic frequency being significantly reduced. Finally, using the results of the radio analysis, we estimate the surface magnetic field strengths to be $approx 0.3-52;$G. (Abridged)
155 - Y. Naze 2010
After the first detection of its binary nature, the spectroscopic monitoring of the non-thermal radio emitter Cyg OB2 #9 (P=2.4yrs) has continued, doubling the number of available spectra of the star. Since the discovery paper of 2008, a second peria stron passage has occurred in February 2009. Using a variety of techniques, the radial velocities could be estimated and a first, preliminary orbital solution was derived from the HeI5876 line. The mass ratio appears close to unity and the eccentricity is large, 0.7--0.75. X-ray data from 2004 and 2007 are also analyzed in quest of peculiarities linked to binarity. The observations reveal no large overluminosity nor strong hardness, but it must be noted that the high-energy data were taken after the periastron passage, at a time where colliding wind emission may be low. Some unusual X-ray variability is however detected, with a 10% flux decrease between 2004 and 2007. To clarify their origin and find a more obvious signature of the wind-wind collision, additional data, taken at periastron and close to it, are needed.
The Cyg OB2 #5 system is thought to consist of a short-period (6.6 d) eclipsing massive binary orbited by an OB-star orbiting with a period of ~6.7 yr; these stars in turn are orbited by a distant early B-star with a period of thousands of years. How ever, while the inner binary has been studied many times, information is missing on the other stars, in particular the third star whose presence was indirectly postulated from recurrent modulations in the radio domain. Besides, to this date, the X-ray light curve could not be fully interpreted, for example in the framework of colliding-wind emission linked to one of the systems. We obtained new optical and X-ray observations of Cyg OB2 #5, which we combined to archival data. We performed a thorough and homogeneous investigation of all available data, notably revisiting the times of primary minimum in photometry. In the X-ray domain, XMM-Newton provides scattered exposures over ~5000 d whilst Swift provides a nearly continuous monitoring for the last couple of years. Although the X-ray light curve reveals clear variability, no significant period can be found hence the high-energy emission cannot be explained solely in terms of colliding winds varying along either the short or intermediate orbits. The optical data reveal for the first time clear signs of reflex motion. The photometry indicates the presence of a 2366 d (i.e. 6.5 yr) period while the associated radial velocity changes are detected at the 3 sigma level in the systemic velocity of the He II 4686 emission line. With the revised period, the radio light curve is interpreted consistently in terms of a wind interaction between the inner binary and the tertiary star. From these optical and radio data, we derive constraints on the physical properties of the tertiary star and its orbit.
Aims: We wish to study the origin of the X-ray emission of three massive stars in the Cyg OB2 association: Cyg OB2 #5, #8A, #12. Methods: To this aim, dedicated X-ray observations from XMM and Swift are used, as well as archival ROSAT and Suzaku data . Results: Our results on Cyg OB2 #8A improve the phase coverage of the orbit and confirm previous studies: the signature of a wind-wind collision is conspicuous. In addition, signatures of a wind-wind collision are also detected in Cyg OB2 #5, but the X-ray emission appears to be associated with the collision between the inner binary and the tertiary component orbiting it with a 6.7yr period, without a putative collision inside the binary. The X-ray properties strongly constrain the orbital parameters, notably allowing us to discard some proposed orbital solutions. To improve the knowledge of the orbit, we revisit the light curves and radial velocity of the inner binary, looking for reflex motion induced by the third star. Finally, the X-ray emission of Cyg OB2 #12 is also analyzed. It shows a marked decrease in recent years, compatible with either a wind-wind collision in a wide binary or the aftermath of a recent eruption.
Aims: Non-thermal radio emission associated with massive stars is believed to arise from a wind-wind collision in a binary system. However, the evidence of binarity is still lacking in some cases, notably Cyg OB2 #9 Methods: For several years, we hav e been monitoring this heavily-reddened star from various observatories. This campaign allowed us to probe variations both on short and long timescales and constitutes the first in-depth study of the visible spectrum of this object. Results: Our observations provide the very first direct evidence of a companion in Cyg OB2 #9, confirming the theoretical wind-wind collision scenario. These data suggest a highly eccentric orbit with a period of a few years, compatible with the 2yr-timescale measured in the radio range. In addition, the signature of the wind-wind collision is very likely reflected in the behaviour of some emission lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا