ﻻ يوجد ملخص باللغة العربية
A simple theory of electromechanical transduction for single-charge-carrier double-layer electroactuators is developed, in which the ion distribution and curvature are mutually coupled. The obtained expressions for the dependence of curvature and charge accumulation on the applied voltage, as well as the electroactuation dynamics, are compared with literature data. The mechanical- or sensor- performance of such electroactuators appears to be determined by just three cumulative parameters, with all of their constituents measurable, permitting a scaling approach to their design.
Solid polymer electrolytes are considered a promising alternative to traditional liquid electrolytes in energy storage applications because of their good mechanical properties, and excellent thermal and chemical stability. A gap, however, still exist
Amorphous organic semiconductors based on small molecules and polymers are used in many applications, most prominently organic light emitting diodes (OLEDs) and organic solar cells. Impurities and charge traps are omnipresent in most currently availa
We derive a dielectric function tensor model approach to render the optical response of monoclinic and triclinic symmetry materials with multiple uncoupled infrared and farinfrared active modes. We apply our model approach to monoclinic $beta$-Ga$_2$
The quasiparticle spectra of atomically thin semiconducting transition metal dichalcogenides (TMDCs) and their response to an ultrafast optical excitation critically depend on interactions with the underlying substrate. Here, we present a comparative
We have performed simulations to study how increasing humidity affects the structure of Nafion-like ionomers under conditions of low sulfonate concentration and low humidity. At the onset of membrane hydration, the clusters split into smaller parts.