ﻻ يوجد ملخص باللغة العربية
Amorphous organic semiconductors based on small molecules and polymers are used in many applications, most prominently organic light emitting diodes (OLEDs) and organic solar cells. Impurities and charge traps are omnipresent in most currently available organic semiconductors and limit charge transport and thus device efficiency. The microscopic cause as well as the chemical nature of these traps are presently not well understood. Using a multiscale model we characterize the influence of impurities on the density of states and charge transport in small-molecule amorphous organic semiconductors. We use the model to quantitatively describe the influence of water molecules and water-oxygen complexes on the electron and hole mobilities. These species are seen to impact the shape of the density of states and to act as explicit charge traps within the energy gap. Our results show that trap states introduced by molecular oxygen can be deep enough to limit the electron mobility in widely used materials.
It is widely assumed that the dominant source of scattering in graphene is charged impurities in a substrate. We have tested this conjecture by studying graphene placed on various substrates and in high-k media. Unexpectedly, we have found no signifi
We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. Our study employs both experiment and theoretical modelling. An excitonic pair mechanism model based on hyperfine interactio
The processability and optoelectronic properties of organic semiconductors can be tuned and manipulated via chemical design. The substitution of the alkyl side chains by oligoethers has recently been successful for applications such as bioelectronic
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two-dimensionally in the first few molecular layers near the dielectric interface. Although the
The magneto-electronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge carrier pairs due to small differences in their Lande g-factors t