ترغب بنشر مسار تعليمي؟ اضغط هنا

The Ubiquity of Supermassive Black Holes in the Hubble Sequence

225   0   0.0 ( 0 )
 نشر من قبل Francine Marleau
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a study of a statistically significant sample of galaxies which clearly demonstrate that supermassive black holes are generically present in all morphological types. Our analysis is based on the quantitative morphological classification of 1.12 million galaxies in the SDSS DR7 and on the detection of black hole activity via two different methods, the first one based on their X-ray/radio emission and the second one based on their mid-infrared colors. The results of the first analysis confirm the correlation between black hole and total stellar mass for 8 galaxies and includes one galaxy classified as bulgeless. The results of our second analysis, consisting of 15,991 galaxies, show that galaxies hosting a supermassive black hole follow the same morphological distribution as the general population of galaxies in the same redshift range. In particular, the fraction of bulgeless galaxies, 1,450 galaxies or 9 percent, is found to be the same as in the general population. We also present the correlation between black hole and total stellar mass for 6,247 of these galaxies. Importantly, whereas previous studies were limited to primarily bulge-dominated systems, our study confirms this relationship to all morphological types, in particular, to 530 bulgeless galaxies. Our results indicate that the true correlation that exists for supermassive black holes and their host galaxies is between the black hole mass and the total stellar mass of the galaxy and hence, we conclude that the previous assumption that the black hole mass is correlated with the bulge mass is only approximately correct.



قيم البحث

اقرأ أيضاً

One of the main themes in extragalactic astronomy for the next decade will be the evolution of galaxies over cosmic time. Many future observatories, including JWST, ALMA, GMT, TMT and E-ELT will intensively observe starlight over a broad redshift ran ge, out to the dawn of the modern Universe when the first galaxies formed. It has, however, become clear that the properties and evolution of galaxies are intimately linked to the growth of their central black holes. Understanding the formation of galaxies, and their subsequent evolution, will therefore be incomplete without similarly intensive observations of the accretion light from supermassive black holes (SMBH) in galactic nuclei. To make further progress, we need to chart the formation of typical SMBH at z>6, and their subsequent growth over cosmic time, which is most effectively achieved with X-ray observations. Recent technological developments in X-ray optics and instrumentation now bring this within our grasp, enabling capabilities fully matched to those expected from flagship observatories at longer wavelengths.
129 - C. M. Booth 2009
The energy and momentum deposited by the radiation from accretion onto the supermassive black holes (BHs) that reside at the centres of virtually all galaxies can halt or even reverse gas inflow, providing a natural mechanism for supermassive BHs to regulate their growth and to couple their properties to those of their host galaxies. However, it remains unclear whether this self-regulation occurs on the scale at which the BH is gravitationally dominant, on that of the stellar bulge, the galaxy, or that of the entire dark matter halo. To answer this question, we use self-consistent simulations of the co-evolution of the BH and galaxy populations that reproduce the observed correlations between the masses of the BHs and the properties of their host galaxies. We first confirm unambiguously that the BHs regulate their growth: the amount of energy that the BHs inject into their surroundings remains unchanged when the fraction of the accreted rest mass energy that is injected, is varied by four orders of magnitude. The BHs simply adjust their masses so as to inject the same amount of energy. We then use simulations with artificially reduced star formation rates to demonstrate explicitly that BH mass is not set by the stellar mass. Instead, we find that it is determined by the mass of the dark matter halo with a secondary dependence on the halo concentration, of the form that would be expected if the halo binding energy were the fundamental property that controls the mass of the BH. We predict that the logarithmic slope of the relation between dark matter halo mass and black hole mass is 1.55+/-0.05 and that the scatter around the mean relation in part reflects the scatter in the halo concentration-mass relation.
An extraordinary recent development in astrophysics was the discovery of the fossil relationship between central black hole mass and the stellar mass of galactic bulges. The physical process underpinning this relationship has become known as feedback . The Chandra X-ray Observatory was instrumental in realizing the physical basis for feedback, by demonstrating a tight coupling between the energy released by supermassive black holes and the gaseous structures surrounding them. This white paper discusses how a great leap forward in X-ray collecting area and spectral resolution will allow a qualitatively new way of studying how feedback from black holes influenced the growth of structure.
We constrain the total accreted mass density in supermassive black holes at z>6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. Studying galaxies obtained from the deepest Hubble Space Telescope images combined with the Chandra 4 Msec observations of the Chandra Deep Field South, we achieve the most restrictive constraints on total black hole growth in the early Universe. We estimate an accreted mass density <1000Mo Mpc^-3 at z~6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations. These results place interesting constraints on early black growth and mass assembly by accretion and imply one or more of the following: (1) only a fraction of the luminous galaxies at this epoch contain active black holes; (2) most black hole growth at early epochs happens in dusty and/or less massive - as yet undetected - host galaxies; (3) there is a significant fraction of low-z interlopers in the galaxy sample; (4) early black hole growth is radiatively inefficient, heavily obscured and/or is due to black hole mergers as opposed to accretion or (5) the bulk of the black hole growth occurs at late times. All of these possibilities have important implications for our understanding of high redshift seed formation models.
Scalar-tensor theories of gravity generally violate the strong equivalence principle, namely compact objects have a suppressed coupling to the scalar force, causing them to fall slower. A black hole is the extreme example where such a coupling vanish es, i.e. black hole has no scalar hair. Following earlier work, we explore observational scenarios for detecting strong equivalence principle violation, focusing on galileon gravity as an example. For galaxies in-falling towards galaxy clusters, the supermassive black hole can be offset from the galaxy center away from the direction of the cluster. Hence, well resolved images of galaxies around nearby clusters can be used to identify the displaced black hole via the star cluster bound to it. We show that this signal is accessible with imaging surveys, both ongoing ones such as the Dark Energy Survey, and future ground and space based surveys. Already, the observation of the central black hole in M~87 places new constraints on the galileon parameters, which we present here. $mathcal{O}(1)$ matter couplings are disfavored for a large region of the parameter space. We also find a novel phenomenon whereby the black hole can escape the galaxy completely in less than one billion years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا