ترغب بنشر مسار تعليمي؟ اضغط هنا

New observational Constraints on the Growth of the First Supermassive Black Holes

133   0   0.0 ( 0 )
 نشر من قبل Ezequiel Treister
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We constrain the total accreted mass density in supermassive black holes at z>6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. Studying galaxies obtained from the deepest Hubble Space Telescope images combined with the Chandra 4 Msec observations of the Chandra Deep Field South, we achieve the most restrictive constraints on total black hole growth in the early Universe. We estimate an accreted mass density <1000Mo Mpc^-3 at z~6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations. These results place interesting constraints on early black growth and mass assembly by accretion and imply one or more of the following: (1) only a fraction of the luminous galaxies at this epoch contain active black holes; (2) most black hole growth at early epochs happens in dusty and/or less massive - as yet undetected - host galaxies; (3) there is a significant fraction of low-z interlopers in the galaxy sample; (4) early black hole growth is radiatively inefficient, heavily obscured and/or is due to black hole mergers as opposed to accretion or (5) the bulk of the black hole growth occurs at late times. All of these possibilities have important implications for our understanding of high redshift seed formation models.



قيم البحث

اقرأ أيضاً

116 - X. Z. Zheng 2009
The star formation rate (SFR) and black hole accretion rate (BHAR) functions are measured to be proportional to each other at z < ~3. This close correspondence between SF and BHA would naturally yield a BH mass-galaxy mass correlation, whereas a BH m ass-bulge mass correlation is observed. To explore this apparent contradiction we study the SF in spheroid-dominated galaxies between z=1 and the present day. We use 903 galaxies from the COMBO-17 survey with M* >2x10^10M_sun, ultraviolet and infrared-derived SFRs from Spitzer and GALEX, and morphologies from GEMS HST/ACS imaging. Using stacking techniques, we find that <25% of all SF occurs in spheroid-dominated galaxies (Sersic index n>2.5), while the BHAR that we would expect if the global scalings held is three times higher. This rules out the simplest picture of co-evolution, in which SF and BHA trace each other at all times. These results could be explained if SF and BHA occur in the same events, but offset in time, for example at different stages of a merger event. However, one would then expect to see the corresponding star formation activity in early-stage mergers, in conflict with observations. We conclude that the major episodes of SF and BHA occur in different events, with the bulk of SF happening in isolated disks and most BHA occurring in major mergers. The apparent global co-evolution results from the regulation of the BH growth by the potential well of the galactic spheroid, which includes a major contribution from disrupted disk stars.
125 - Andrea Merloni 2009
The physical and evolutionary relation between growing supermassive black holes (AGN) and host galaxies is currently the subject of intense research activity. Nevertheless, a deep theoretical understanding of such a relation is hampered by the unique multi-scale nature of the combined AGN-galaxy system, which defies any purely numerical, or semi-analytic approach. Various physical process active on different scales have signatures in different parts of the electromagnetic spectrum; thus, observations at different wavelengths and theoretical ideas all should contribute towards a large dynamic range view of the AGN phenomenon. As an example, I will focus in this review on two major recent observational results on the cosmic evolution of supermassive black holes, focusing on the novel contribution given to the field by the COSMOS survey. First of all, I will discuss the evidence for the so-called downsizing in the AGN population as derived from large X-ray surveys. I will then present new constraints on the evolution of the black hole-galaxy scaling relation at 1<z<2 derived by exploiting the full multi-wavelength coverage of the survey on a complete sample of ~90 type 1 AGN.
One of the main themes in extragalactic astronomy for the next decade will be the evolution of galaxies over cosmic time. Many future observatories, including JWST, ALMA, GMT, TMT and E-ELT will intensively observe starlight over a broad redshift ran ge, out to the dawn of the modern Universe when the first galaxies formed. It has, however, become clear that the properties and evolution of galaxies are intimately linked to the growth of their central black holes. Understanding the formation of galaxies, and their subsequent evolution, will therefore be incomplete without similarly intensive observations of the accretion light from supermassive black holes (SMBH) in galactic nuclei. To make further progress, we need to chart the formation of typical SMBH at z>6, and their subsequent growth over cosmic time, which is most effectively achieved with X-ray observations. Recent technological developments in X-ray optics and instrumentation now bring this within our grasp, enabling capabilities fully matched to those expected from flagship observatories at longer wavelengths.
174 - Stuart McAlpine 2018
We investigate the rapid growth phase of supermassive black holes (BHs) within the hydrodynamical cosmological eagle simulation. This non-linear phase of BH growth occurs within $sim$$L_{*}$ galaxies, embedded between two regulatory states of the gal axy host: in sub $L_{*}$ galaxies efficient stellar feedback regulates the gas inflow onto the galaxy and significantly reduces the growth of the central BH, while in galaxies more massive than $L_{*}$ efficient AGN feedback regulates the gas inflow onto the galaxy and curbs further non-linear BH growth. We find evolving critical galaxy and halo mass scales at which rapid BH growth begins. Galaxies in the low-redshift Universe transition into the rapid BH growth phase in haloes that are approximately an order of magnitude more massive than their high-redshift counterparts (M{200} $approx 10^{12.4}$~Msol at $z approx 0$ decreasing to M{200} $approx 10^{11.2}$~Msol at $z approx 6$). Instead, BHs enter the rapid growth phase at a fixed critical halo virial temperature ($T_{mathrm{vir}} approx 10^{5.6}$~K). We additionally show that major galaxy--galaxy interactions ($mu geq frac{1}{4}$, where $mu$ is the stellar mass ratio) play a substantial role in triggering the rapid growth phase of BHs in the low-redshift Universe, whilst potentially having a lower influence at high redshift. Approximately 40% of BHs that initiate the rapid BH growth phase at $z approx 0$ do so within $pm 0.5$ dynamical times of a major galaxy--galaxy merger, a fourfold increase above what is expected from the background merger rate. We find that minor mergers ($frac{1}{10} leq mu < frac{1}{4}$) have a substantially lower influence in triggering the rapid growth phase at all epochs.
We develop a simple evolutionary scenario for the growth of supermassive black holes (BHs), assuming growth due to accretion only, to learn about the evolution of the BH mass function from $z=3$ to 0 and from it calculate the energy budgets of differ ent modes of feedback. We tune the parameters of the model by matching the derived X-ray luminosity function (XLF) with the observed XLF of active galactic nuclei. We then calculate the amount of comoving kinetic and bolometric feedback as a function of redshift, derive a kinetic luminosity function and estimate the amount of kinetic feedback and $PdV$ work done by classical double Fanaroff-Riley II (FR II) radio sources. We also derive the radio luminosity function for FR IIs from our synthesized population and set constraints on jet duty cycles. Around 1/6 of the jet power from FR II sources goes into $PdV$ work done in the expanding lobes during the time the jet is on. Anti hierarchical growth of BHs is seen in our model due to addition of an amount of mass being accreted on to all BHs independent of the BH mass. The contribution to the total kinetic feedback by active galaxies in a low accretion, kinetically efficient mode is found to be the most significant at $z<1.5$. FR II feedback is found to be a significant mode of feedback above redshifts $zsim 1.5$, which has not been highlighted by previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا