ﻻ يوجد ملخص باللغة العربية
Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs to be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a $^{87}$Rb magneto-optical trap with a peak optical depth of 1000 for the D2 $F=2 rightarrow F=3$ transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble to implement the gradient echo memory (GEM) scheme. Our data shows a memory efficiency of $80pm 2$% and coherence times up to 195 $mu$s, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.
The burgeoning fields of quantum computing and quantum key distribution have created a demand for a quantum memory. The gradient echo memory scheme is a quantum memory candidate for light storage that can boast efficiencies approaching unity, as well
We study the storage and retrieval of images in a hot atomic vapor using the gradient echo memory protocol. We demonstrate that this technique allows for the storage of multiple spatial modes. We study both spatial and temporal multiplexing by storin
Long-lived storage of arbitrary transverse multimodes is important for establishing a high-channel-capacity quantum network. Most of the pioneering works focused on atomic diffusion as the dominant impact on the retrieved pattern in an atom-based mem
We report on the delay of optical pulses using electromagnetically induced transparency in an ensemble of cold atoms with an optical depth exceeding 500. To identify the regimes in which four-wave mixing impacts on EIT behaviour, we conduct the exper
One of the most striking features of the strong interactions between Rydberg atoms is the dipole blockade effect, which allows only a single excitation to the Rydberg state within the volume of the blockade sphere. Here we present a method that spati