ترغب بنشر مسار تعليمي؟ اضغط هنا

Rydberg tomography of an ultra-cold atomic cloud

111   0   0.0 ( 0 )
 نشر من قبل Oliver Morsch
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the most striking features of the strong interactions between Rydberg atoms is the dipole blockade effect, which allows only a single excitation to the Rydberg state within the volume of the blockade sphere. Here we present a method that spatially visualizes this phenomenon in an inhomogeneous gas of ultra-cold rubidium atoms. In our experiment we scan the position of one of the excitation lasers across the cold cloud and determine the number of Rydberg excitations detected as a function of position. Comparing this distribution to the one obtained for the number of ions created by a two-photon ionization process via the intermediate 5P level, we demonstrate that the blockade effect modifies the width of the Rydberg excitation profile. Furthermore, we study the dynamics of the Rydberg excitation and find that the timescale for the excitation depends on the atomic density at the beam position.



قيم البحث

اقرأ أيضاً

506 - Hans Peter Buchler 2010
We study cold atomic gases with a contact interaction and confined into one-dimension. Crossing the confinement induced resonance the correlation between the bosons increases, and introduces an effective range for the interaction potential. Using the mapping onto the sine-Gordon model and a Hubbard model in the strongly interacting regime allows us to derive the phase diagram in the presence of an optical lattice. We demonstrate the appearance of a phase transition from a Luttinger liquid with algebraic correlations into a crystalline phase with a particle on every second lattice site.
We study a two-level impurity coupled locally to a quantum gas on an optical lattice. For state-dependent interactions between the impurity and the gas, we show that its evolution encodes information on the local excitation spectrum of gas at the cou pling site. Based on this, we design a nondestructive method to probe the systems excitations in a broad range of energies by measuring the state of the probe using standard atom optics methods. We illustrate our findings with numerical simulations for quantum lattice systems, including realistic dephasing noise on the quantum probe, and discuss practical limits on the probe dephasing rate to fully resolve both regular and chaotic spectra.
We investigate simultaneous state-insensitive trapping of a mixture of two different atomic species, Caesium and Rubidium. The magic wavelengths of the Caesium and Rubidium atoms are different, $935.6$ nm and $789.9$ nm respectively, thus single-freq uency simultaneous state-insensitive trapping is not possible. We thus identify bichromatic trapping as a viable approach to tune the two magic wavelengths to a common value. Correspondingly, we present several common magic wavelength combinations appropriate for simultaneous state-insensitive trapping of the two atomic species.
412 - D. Chen , M. White , C. Borries 2011
We study quenches across the Bose-Hubbard Mott-insulator-to-superfluid quantum phase transition using an ultra-cold atomic gas trapped in an optical lattice. Quenching from the Mott insulator to superfluid phase is accomplished by continuously tuning the ratio of Hubbard tunneling to interaction energy. Excitations of the condensate formed after the quench are measured using time-of-flight imaging. We observe that the degree of excitation is proportional to the fraction of atoms that cross the phase boundary, and that the quantity of excitations and energy produced during the quench have a power-law dependence on the quench rate. These phenomena suggest an excitation process analogous to the Kibble-Zurek (KZ) mechanism for defect generation in non-equilibrium classical phase transitions.
We demonstrate clear collective atomic recoil motion in a dilute, momentum-squeezed, ultra-cold degenerate fermion gas by circumventing the effects of Pauli blocking. Although gain from bosonic stimulation is necessarily absent because the quantum ga s obeys Fermi-Dirac statistics, collective atomic recoil motion from the underlying wave-mixing process is clearly visible. With a single pump pulse of the proper polarization, we observe two mutually-perpendicular wave-mixing processes occurring simultaneously. Our experiments also indicate that the red-blue pump detuning asymmetry observed with Bose-Einstein condensates does not occur with fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا