ترغب بنشر مسار تعليمي؟ اضغط هنا

The JHU-SDSS metal absorption line catalog: redshift evolution and properties of Mg II absorbers

269   0   0.0 ( 0 )
 نشر من قبل Guangtun Zhu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a generic and fully-automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique, nonnegative matrix factorization, and then detects and identifies metal absorption lines. We apply it to a sample of ~100,000 quasar spectra from the Sloan Digital Sky Survey and compile a sample of ~40,000 Mg II & Fe II absorber systems, spanning the redshift range 0.4< z < 2.3. The corresponding catalog is publicly available. We study the statistical properties of these absorber systems and find that the rest equivalent width distribution of strong Mg II absorbers follows an exponential distribution at all redshifts, confirming previous studies. Combining our results with recent near-infrared observations of Mg II absorbers we introduce a new parametrization that fully describes the incidence rate of these systems up to z~5. We find the redshift evolution of strong Mg II absorbers to be remarkably similar to the cosmic star formation history over 0.4<z<5.5 (the entire redshift range covered by observations), suggesting a physical link between these two quantities.



قيم البحث

اقرأ أيضاً

We analyze the cross-correlation of 2,705 unambiguously intervening Mg II (2796,2803A) quasar absorption line systems with 1,495,604 luminous red galaxies (LRGs) from the Fifth Data Release of the Sloan Digital Sky Survey within the redshift range 0. 36<=z<=0.8. We confirm with high precision a previously reported weak anti-correlation of equivalent width and dark matter halo mass, measuring the average masses to be log M_h(M_[solar]h^-1)=11.29 [+0.36,-0.62] and log M_h(M_[solar]h^-1)=12.70 [+0.53,-1.16] for systems with W[2796A]>=1.4A and 0.8A<=W[2796A]<1.4A, respectively. Additionally, we investigate the significance of a number of potential sources of bias inherent in absorber-LRG cross-correlation measurements, including absorber velocity distributions and the weak lensing of background quasars, which we determine is capable of producing a 20-30% bias in angular cross-correlation measurements on scales less than 2. We measure the Mg II - LRG cross-correlation for 719 absorption systems with v<60,000 km s^-1 in the quasar rest frame and find that these associated absorbers typically reside in dark matter haloes that are ~10-100 times more massive than those hosting unambiguously intervening Mg II absorbers. Furthermore, we find evidence for evolution of the redshift number density, dN/dz, with 2-sigma significance for the strongest (W>2.0A) absorbers in the DR5 sample. This width-dependent dN/dz evolution does not significantly affect the recovered equivalent width-halo mass anti-correlation and adds to existing evidence that the strongest Mg II absorption systems are correlated with an evolving population of field galaxies at z<0.8, while the non-evolving dN/dz of the weakest absorbers more closely resembles that of the LRG population.
We present basic properties of $sim$3,300 emission line galaxies detected by the FastSound survey, which are mostly H$alpha$ emitters at $z sim$ 1.2-1.5 in the total area of about 20 deg$^2$, with the H$alpha$ flux sensitivity limit of $sim 1.6 times 10^{-16} rm erg cm^{-2} s^{-1}$ at 4.5 sigma. This paper presents the catalogs of the FastSound emission lines and galaxies, which will be open to the public in the near future. We also present basic properties of typical FastSound H$alpha$ emitters, which have H$alpha$ luminosities of $10^{41.8}$-$10^{43.3}$ erg/s, SFRs of 20--500 $M_odot$/yr, and stellar masses of $10^{10.0}$--$10^{11.3}$ $M_odot$. The 3D distribution maps for the four fields of CFHTLS W1--4 are presented, clearly showing large scale clustering of galaxies at the scale of $sim$ 100--600 comoving Mpc. Based on 1,105 galaxies with detections of multiple emission lines, we estimate that contamination of non-H$alpha$ lines is about 4% in the single-line emission galaxies, which are mostly [OIII]$lambda$5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which H$alpha$, [NII]$lambda lambda$6548,6583, [SII]$lambda lambda$6717, 6731, and [OI]$lambda lambda$6300,6364 are seen.
We present final statistics from a survey for intervening MgII absorption towards 100 quasars with emission redshifts between $z=3.55$ and $z=7.08$. Using infrared spectra from Magellan/FIRE, we detect 279 cosmological MgII absorbers, and confirm tha t the incidence rate of $W_r>0.3 AA$ MgII absorption per comoving path length does not evolve measurably between $z=0.25$ and $z=7$. This is consistent with our detection of seven new MgII systems at $z>6$, a redshift range that was not covered in prior searches. Restricting to relatively strong MgII systems ($W_r>1$AA), there is significant evidence for redshift evolution. These systems roughly double in number density between $z=0$ and $z=2$-$3$, but decline by an order of magnitude from this peak by $zsim 6$. This evolution mirrors that of the global star formation rate density, which could reflect a connection between star formation feedback and strong MgII absorbers. We compared our results to the Illustris cosmological simulation at $z=2$-$4$ by assigning absorption to catalogued dark-matter halos and by direct extraction of spectra from the simulation volume. To reproduce our results using the halo catalogs, we require circumgalactic (CGM) MgII envelopes within halos of progressively smaller mass at earlier times. This occurs naturally if we define the lower integration cutoff using SFR rather than mass. MgII profiles calculated directly from the Illustris volume yield far too few strong absorbers. We argue that this arises from unresolved phase space structure of CGM gas, particularly from turbulent velocities on sub-mesh scales. The presence of CGM MgII at $z>6$-- just $sim 250$ Myr after the reionization redshift implied by Planck--suggests that enrichment of intra-halo gas may have begun before the presumed host galaxies stellar populations were mature and dynamically relaxed. [abridged]
We present the results of a MgII absorption-line survey using QSO spectra from the SDSS EDR. Over 1,300 doublets with rest equivalent widths greater than 0.3AA and redshifts $0.366 le z le 2.269$ were identified and measured. We find that the $lambda 2796$ rest equivalent width ($W_0^{lambda2796}$) distribution is described very well by an exponential function $partial N/partial W_0^{lambda2796} = frac{N^*}{W^*} e^{-frac{W_0}{W^*}}$, with $N^*=1.187pm0.052$ and $W^*=0.702pm0.017$AA. Previously reported power law fits drastically over-predict the number of strong lines. Extrapolating our exponential fit under-predicts the number of $W_0 le 0.3$AA systems, indicating a transition in $dN/dW_0$ near $W_0 simeq 0.3$AA. A combination of two exponentials reproduces the observed distribution well, suggesting that MgII absorbers are the superposition of at least two physically distinct populations of absorbing clouds. We also derive a new redshift parameterization for the number density of $W_0^{lambda2796} ge 0.3$AA lines: $N^*=1.001pm0.132(1+z)^{0.226pm0.170}$ and $W^*=0.443pm0.032(1+z)^{0.634pm 0.097}$AA. We find that the distribution steepens with decreasing redshift, with $W^*$ decreasing from $0.80pm0.04$AA at $z=1.6$ to $0.59pm0.02$AA at $z=0.7$. The incidence of moderately strong MgII $lambda2796$ lines does not show evidence for evolution with redshift. However, lines stronger than $approx 2$AA show a decrease relative to the no-evolution prediction with decreasing redshift for $z lesssim 1$. The evolution is stronger for increasingly stronger lines. Since $W_0$ in saturated absorption lines is an indicator of the velocity spread of the absorbing clouds, we interpret this as an evolution in the kinematic properties of galaxies from moderate to low z.
We present and describe a catalog of galaxy photometric redshifts (photo-zs) for the Sloan Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique to calculate photo-zs and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for $sim$ 13 million objects classified as galaxies in the coadd with $r < 24.5$. The photo-z and photo-z error estimators are trained and validated on a sample of $sim 83,000$ galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the VIsible imaging Multi-Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than $sigma_{68} =0.031$. After presenting our results and quality tests, we provide a short guide for users accessing the public data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا