ﻻ يوجد ملخص باللغة العربية
We present and describe a catalog of galaxy photometric redshifts (photo-zs) for the Sloan Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique to calculate photo-zs and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for $sim$ 13 million objects classified as galaxies in the coadd with $r < 24.5$. The photo-z and photo-z error estimators are trained and validated on a sample of $sim 83,000$ galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the VIsible imaging Multi-Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than $sigma_{68} =0.031$. After presenting our results and quality tests, we provide a short guide for users accessing the public data.
Stripe 82 in the Sloan Digital Sky Survey was observed multiple times, allowing deeper images to be constructed by coadding the data. Here we analyze the ellipticities of background galaxies in this 275 square degree region, searching for evidence of
We present details of the construction and characterization of the coaddition of the Sloan Digital Sky Survey Stripe 82 ugriz imaging data. This survey consists of 275 deg$^2$ of repeated scanning by the SDSS camera of $2.5arcdeg$ of $delta$ over $-5
We present an HI-optical catalog of ~ 30,000 galaxies based on the 100% complete Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey combined with data from the Sloan Digital Sky Survey (SDSS). Our goal is to facilitate public use of the c
Key cosmological applications require the three-dimensional galaxy distribution on the entire celestial sphere. These include measuring the gravitational pull on the Local Group, estimating the large-scale bulk flow and testing the Copernican princip
We present redshift probability distributions for galaxies in the SDSS DR8 imaging data. We used the nearest-neighbor weighting algorithm presented in Lima et al. 2008 and Cunha et al. 2009 to derive the ensemble redshift distribution N(z), and indiv