ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of turbulent density-fluctuations on wave-particle interactions and solar flare X-ray spectra

235   0   0.0 ( 0 )
 نشر من قبل Iain Hannah
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this paper is to demonstrate the effect of turbulent background density fluctuations on flare-accelerated electron transport in the solar corona. Using the quasi-linear approximation, we numerically simulated the propagation of a beam of accelerated electrons from the solar corona to the chromosphere, including the self-consistent response of the inhomogeneous background plasma in the form of Langmuir waves. We calculated the X-ray spectrum from these simulations using the bremsstrahlung cross-section and fitted the footpoint spectrum using the collisional thick-target model, a standard approach adopted in observational studies. We find that the interaction of the Langmuir waves with the background electron density gradient shifts the waves to a higher phase velocity where they then resonate with higher velocity electrons. The consequence is that some of the electrons are shifted to higher energies, producing more high-energy X-rays than expected if the density inhomogeneity is not considered. We find that the level of energy gain is strongly dependent on the initial electron beam density at higher energy and the magnitude of the density gradient in the background plasma. The most significant gains are for steep (soft) spectra that initially had few electrons at higher energies. If the X-ray spectrum of the simulated footpoint emission are fitted with the standard thick-target model (as is routinely done with RHESSI observations) some simulation scenarios produce more than an order-of-magnitude overestimate of the number of electrons $>50$keV in the source coronal distribution.



قيم البحث

اقرأ أيضاً

Previous estimates of the solar flare abundances of Si, S, Cl, Ar, and K from the RESIK X-ray crystal spectrometer on board the CORONAS-F spacecraft were made on the assumption of isothermal X-ray emission. We investigate the effect on these estimate s by relaxing this assumption and instead determining the differential emission measure (DEM) or thermal structure of the emitting plasma by re-analyzing RESIK data for a GOES class M1.0 flare on 2002 November~14 (SOL2002-11-14T22:26) for which there was good data coverage. The analysis method uses a maximum-likelihood (Withbroe--Sylwester) routine for evaluating the DEM. In a first step, called here AbuOpt, an optimized set of abundances of Si, S, Ar, and K is found that is consistent with the observed spectra. With these abundances, the differential emission measure evolution during the flare is found. The abundance optimization leads to revised abundances of silicon and sulfur in the flare plasma: $A({rm S}) = 6.94 pm 0.06$ and $A({rm Si}) = 7.56 pm 0.08$ (on a logarithmic scale with $A({rm H}) = 12$). Previously determined abundances of Ar, K, and Cl from an isothermal assumption are still the preferred values. During the flares maximum phase, the X-ray-emitting plasma has a basically two-temperature structure, with the cooler plasma with approximately constant temperature (3--6~MK) and a hotter plasma with temperature $16-21$~MK. Using imaging data from the RHESSI hard X-ray spacecraft, the emission volume of the hot plasma is deduced from which lower limits of the electron density $N_e$ and the thermal content of the plasma are given.
We compare the characteristics of flare-accelerated energetic electrons at the Sun with those injected into interplanetary space. We have identified 17 energetic electron events well-observed with the SEPT instrument aboard STEREO which show a clear association with a hard X-ray (HXR) flare observed with the RHESSI spacecraft. We compare the spectral indices of the RHESSI HXR spectra with those of the interplanetary electrons. Because of the frequent double-power-law shape of the in situ electron spectra, we paid special attention to the choice of the spectral index used for comparison. The time difference between the electron onsets and the associated type III and microwave bursts suggests that the electron events are detected at 1 AU with apparent delays ranging from 9 to 41 minutes. While the parent solar activity is clearly impulsive, also showing a high correlation with extreme ultraviolet jets, most of the studied events occur in temporal coincidence with coronal mass ejections (CMEs). In spite of the observed onset delays and presence of CMEs in the low corona, we find a significant correlation of about 0.8 between the spectral indices of the HXR flare and the in situ electrons. The correlations increase if only events with significant anisotropy are considered. This suggests that transport effects can alter the injected spectra leading to a strongly reduced imprint of the flare acceleration. We conclude that interplanetary transport effects must be taken into account when inferring the initial acceleration of solar energetic electron events. Although our results suggest a clear imprint of flare acceleration for the analyzed event sample, a secondary acceleration might be present which could account for the observed delays. However, the limited and variable pitch-angle coverage of SEPT could also be the reason for the observed delays.
It is widely reported that the power spectra of magnetic field and velocity fluctuations in the solar wind have power law scalings with inertial-range spectral indices of -5/3 and -3/2 respectively. Studies of solar wind turbulence have repeatedly de monstrated the impact of discontinuities and coherent structures on the measured spectral index. Whether or not such discontinuities are self-generated by the turbulence or simply observations of advected structures from the inner heliosphere has been a matter of considerable debate. This work presents a statistical study of magnetic field and velocity spectral indices over 10 years of solar-wind observations; we find that anomalously steep magnetic spectra occur in magnetically dominated intervals with negative residual energy. However, this increase in negative residual energy has no noticeable impact on the spectral index of the velocity fluctuations, suggesting that these intervals with negative residual energy correspond to intermittent magnetic structures. We show statistically that the difference between magnetic and velocity spectral indices is a monotonic function of residual energy, consistent with previous work which suggests that intermittency in fluctuations causes spectral steepening. Additionally, a statistical analysis of cross helicity demonstrates that when the turbulence is balanced (low cross-helicity), the magnetic and velocity spectral indices are not equal, which suggests that our observations of negative residual energy and intermittent structures are related to non-linear turbulent interactions rather than the presence of advected pre-existing flux-tube structures.
In recent years, a phenomenological solar wind heating model based on a turbulent energy cascade prescribed by the Kolmogorov theory has produced reasonably good agreement with observations on proton temperatures out to distances around 70 AU, provid ed the effect of turbulence generation due to pickup ions is included in the model. In a recent study [Ng et al., J. Geophys. Res., 115, A02101 (2010)], we have incorporated in the heating model the energy cascade rate based on Iroshnikov-Kraichnan (IK) scaling. We showed that the IK cascade rate can also produce good agreement with observations, with or without the inclusion of pickup ions. This effect was confirmed both by integrating the model using average boundary conditions at 1 AU, and by applying a method [Smith et al., Astrophys. J., 638, 508 (2006)] that uses directly observed values as boundary conditions. The effects due to pickup ions is found to be less important for the IK spectrum, which is shallower than the Kolmogorov spectrum. In this paper, we will present calculations of the pickup ions effect in more details, and discuss the physical reason why a shallower spectrum generates less waves and turbulence.
The Sun frequently accelerates near-relativistic electron beams that travel out through the solar corona and interplanetary space. Interacting with their plasma environment, these beams produce type III radio bursts, the brightest astrophysical radio sources seen from the Earth. The formation and motion of type III fine frequency structures is a puzzle but is commonly believed to be related to plasma turbulence in the solar corona and solar wind. Combining a theoretical framework with kinetic simulations and high-resolution radio type III observations using the Low Frequency Array, we quantitatively show that the fine structures are caused by the moving intense clumps of Langmuir waves in a turbulent medium. Our results show how type III fine structure can be used to remotely analyse the intensity and spectrum of compressive density fluctuations, and can infer ambient temperatures in astrophysical plasma, both significantly expanding the current diagnostic potential of solar radio emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا