ﻻ يوجد ملخص باللغة العربية
In recent years, a phenomenological solar wind heating model based on a turbulent energy cascade prescribed by the Kolmogorov theory has produced reasonably good agreement with observations on proton temperatures out to distances around 70 AU, provided the effect of turbulence generation due to pickup ions is included in the model. In a recent study [Ng et al., J. Geophys. Res., 115, A02101 (2010)], we have incorporated in the heating model the energy cascade rate based on Iroshnikov-Kraichnan (IK) scaling. We showed that the IK cascade rate can also produce good agreement with observations, with or without the inclusion of pickup ions. This effect was confirmed both by integrating the model using average boundary conditions at 1 AU, and by applying a method [Smith et al., Astrophys. J., 638, 508 (2006)] that uses directly observed values as boundary conditions. The effects due to pickup ions is found to be less important for the IK spectrum, which is shallower than the Kolmogorov spectrum. In this paper, we will present calculations of the pickup ions effect in more details, and discuss the physical reason why a shallower spectrum generates less waves and turbulence.
The fast solar winds high speeds and nonthermal features require that significant heating occurs well above the Suns surface. Two leading theories have seemed incompatible: low-frequency Alfvenic turbulence, which transports energy outwards but strug
Whether the phenomenology governing MHD turbulence is Kolmogorov or Iroshnikov-Kraichnan (IK) remains an open question, theoretically as well as observationally. The ion heating profile observed in the solar wind provides a quantitative, if indirect,
Fluctuations in the flow velocity and magnetic fields are ubiquitous in the Solar System. These fluctuations are turbulent, in the sense that they are disordered and span a broad range of scales in both space and time. The study of solar wind turbule
The first two orbits of the Parker Solar Probe (PSP) spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 Rs). Here, we present an analysis of this data to study solar wind turbule
A scenario is proposed to explain the preferential heating of minor ions and differential streaming velocity between minor ions and protons observed in the solar corona and in the solar wind. It is demonstrated by test particle simulations that minor