ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra Fast Outflows: Galaxy-Scale Active Galactic Nucleus Feedback

204   0   0.0 ( 0 )
 نشر من قبل Alexander Y. Wagner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically, rather than in a disc. In the latter case the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGN, they are likely to be important in the cosmological feedback cycles of galaxy formation.



قيم البحث

اقرأ أيضاً

128 - F. Tombesi 2014
Recent X-ray observations show absorbing winds with velocities up to mildly-relativistic values of the order of ~0.1c in a limited sample of 6 broad-line radio galaxies. They are observed as blue-shifted Fe XXV-XXVI K-shell absorption lines, similarl y to the ultra-fast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud AGNs observed with XMM-Newton and Suzaku. The sample is drawn from the Swift BAT 58-month catalog and blazars are excluded. X-ray bright FR II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27% of the sources. However, correcting for the number of spectra with insufficient signal-to-noise, we can estimate that the incidence of UFOs is this sample of radio-loud AGNs is likely in the range f=(50+/-20)%. A photo-ionization modeling of the absorption lines with XSTAR allows to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between v_out<1,000 km s^-1 and v_out~0.4c, with mean and median values of v_out~0.133c and v_out~0.117c, respectively. The material is highly ionized, with an average ionization parameter of logxi~4.5 erg s^-1 cm, and the column densities are larger than N_H > 10^22 cm^-2. Overall, these characteristics are consistent with the presence of complex accretion disk winds in a significant fraction of radio-loud AGNs and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.
Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster mediu m in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.
We use MUSE adaptive optics (AO) data in Narrow Field Mode to study the properties of the ionised gas in MR 2251-178 and PG 1126-041, two nearby (z~0.06) bright quasars hosting sub-pc scale Ultra Fast Outflows (UFOs) detected in the X-ray band. We de compose the optical emission from diffuse gas into a low- and a high-velocity components. The former is characterised by a clean, regular velocity field and a low (~80 km/s) velocity dispersion. It traces regularly rotating gas in PG 1126-041, while in MR 2251-178 it is possibly associated to tidal debris from a recent merger or flyby. The other component is found to be extended up to a few kpc from the nuclei, and shows a high (~800 km/s) velocity dispersion and a blue-shifted mean velocity, as expected from AGN-driven outflows. We estimate mass outflow rates up to a few Mo/yr and kinetic efficiencies between 0.1-0.4 per cent, in line with those of galaxies hosting AGNs of similar luminosity. The momentum rates of these ionised outflows are comparable to those measured for the UFOs at sub-pc scales, consistent with a momentum-driven wind propagation. Pure energy-driven winds are excluded unless about 100x additional momentum is locked in massive molecular winds. By comparing the outflow properties of our sources with those of a small sample of well-studied QSOs hosting UFOs from the literature, we find that winds seem to systematically lie either in a momentum-driven or in an energy-driven regime, indicating that these two theoretical models bracket very well the physics of AGN-driven winds.
This paper summarizes our recent works of studying AGN feedback in an isolated elliptical galaxy by performing high-resolution hydrodynamical numerical simulations. Bondi radius is resolved and the mass accretion rate of the black hole is calculated. The most updated AGN physics, namely the discrimination of cold and hot accretion modes and the exact descriptions of the AGN radiation and wind for a given accretion rate are adopted and their interaction with the gas in the host galaxy is calculated. Physical processes such as star formation and SNe feedback are taken into account. Consistent with observation, we find the AGN spends most of the time in the low-luminosity regime. AGN feedback overall suppresses the star formation; but depending on location in the galaxy and time, it can also enhance it. The light curve of specific star formation rate is not synchronous with the AGN light curve. We find that wind usually plays a dominant role in controlling the AGN luminosity and star formation, but radiation also cannot be neglected.
Large-scale outflows are generally considered as a possible evidence that active galactic nuclei (AGNs) can severely affect their host galaxies. Recently an ultraluminous IR galaxy (ULIRG) at $z=0.49$, AKARI J0916248+073034, was found to have a galax y-scale [OIII] $lambda$5007 outflow with one of the highest energy-ejection rates at $z<1.6$. However, the central AGN activity estimated from its torus mid-IR (MIR) radiation is weak relative to the luminous [OIII] emission. In this work we report the first NuSTAR hard X-ray follow-up of this ULIRG to constrain its current AGN luminosity. The intrinsic 2-10 keV luminosity shows a 90% upper-limit of $3.0times10^{43}$ erg s$^{-1}$ assuming Compton-thick obscuration ($N_{rm H}=1.5times10^{24}$ cm$^{-2}$), which is only 3.6% of the luminosity expected from the extinction corrected [OIII] luminosity. With the NuSTAR observation, we succeed to identify that this ULIRG has a most extreme case of X-ray deficit among local ULIRGs. A possible scenario to explain the drastic declining in both of the corona (X-ray) and torus (MIR) is that the primary radiation from the AGN accretion disk is currently in a fading status, as a consequence of a powerful nuclear wind suggested by its powerful ionized outflow in the galaxy scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا