ﻻ يوجد ملخص باللغة العربية
We show how to efficiently simulate continuous-time quantum query algorithms that run in time T in a manner that preserves the query complexity (within a polylogarithmic factor) while also incurring a small overhead cost in the total number of gates between queries. By small overhead, we mean T within a factor that is polylogarithmic in terms of T and a cost measure that reflects the cost of computing the driving Hamiltonian. This permits any continuous-time quantum algorithm based on an efficiently computable driving Hamiltonian to be converted into a gate-efficient algorithm with similar running time.
Variational quantum algorithms are believed to be promising for solving computationally hard problems and are often comprised of repeated layers of quantum gates. An example thereof is the quantum approximate optimization algorithm (QAOA), an approac
We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithm
The quantum query models is one of the most important models in quantum computing. Several well-known quantum algorithms are captured by this model, including the Deutsch-Jozsa algorithm, the Simon algorithm, the Grover algorithm and others. In this
Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete
We present an efficient approach to continuous-time quantum error correction that extends the low-dimensional quantum filtering methodology developed by van Handel and Mabuchi [quant-ph/0511221 (2005)] to include error recovery operations in the form