ترغب بنشر مسار تعليمي؟ اضغط هنا

On the relationship between continuous- and discrete-time quantum walk

177   0   0.0 ( 0 )
 نشر من قبل Andrew M. Childs
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrew M. Childs




اسأل ChatGPT حول البحث

Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete-time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.



قيم البحث

اقرأ أيضاً

142 - Y.M.Min , K.Wang 2016
In this paper, we study the quantum walk on the 2D Penrose Lattice, which is intermediate between periodic and disordered structure. Quantum walk on Penrose Lattice is less efficient in transport comparing to the regular lattices. By calculating the final remaining probability on the initial nodes and estimating the low bound. Our results show that the broken of translational symmetry induces both the localized states and degeneracy of eigenstates at $E=0$, this two differences from regular lattices influence efficiency of quantum walk. Also, we observe the transition from inefficient to efficient transport after introducing the near hopping terms, which suggests that we can adjust the hopping strength and achieve a phase transition progress.
We define the hitting (or absorbing) time for the case of continuous quantum walks by measuring the walk at random times, according to a Poisson process with measurement rate $lambda$. From this definition we derive an explicit formula for the hittin g time, and explore its dependence on the measurement rate. As the measurement rate goes to either 0 or infinity the hitting time diverges; the first divergence reflects the weakness of the measurement, while the second limit results from the Quantum Zeno effect. Continuous-time quantum walks, like discrete-time quantum walks but unlike classical random walks, can have infinite hitting times. We present several conditions for existence of infinite hitting times, and discuss the connection between infinite hitting times and graph symmetry.
We study the quantum walk search algorithm of Shenvi, Kempe and Whaley [PRA 67 052307 (2003)] on data structures of one to two spatial dimensions, on which the algorithm is thought to be less efficient than in three or more spatial dimensions. Our ai m is to understand why the quantum algorithm is dimension dependent whereas the best classical algorithm is not, and to show in more detail how the efficiency of the quantum algorithm varies with spatial dimension or accessibility of the data. Our numerical results agree with the expected scaling in 2D of $O(sqrt{N log N})$, and show how the prefactors display significant dependence on both the degree and symmetry of the graph. Specifically, we see, as expected, the prefactor of the time complexity dropping as the degree (connectivity) of the structure is increased.
The finite dihedral group generated by one rotation and one flip is the simplest case of the non-abelian group. Cayley graphs are diagrammatic counterparts of groups. In this paper, much attention is given to the Cayley graph of the dihedral group. C onsidering the characteristics of the elements in the dihedral group, we conduct the model of discrete-time quantum walk on the Cayley graph of the dihedral group by special coding mode. This construction makes Fourier transformation can be used to carry out spectral analysis of the dihedral quantum walk, i.e. the non-abelian case. Furthermore, the relation between quantum walk without memory on the Cayley graph of the dihedral group and quantum walk with memory on a cycle is discussed, so that we can explore the potential of quantum walks without and with memory. Here, the numerical simulation is carried out to verify the theoretical analysis results and other properties of the proposed model are further studied.
The unique features of quantum walk, such as the possibility of the walker to be in superposition ofthe position space and get entangled with the position space, provides inherent advantages that canbe captured to design highly secure quantum communi cation protocols. Here we propose two quan-tum direct communication protocols, a Quantum Secure Direct Communication (QSDC) protocoland a Controlled Quantum Dialogue (CQD) protocol using discrete-time quantum walk on a cycle.The proposed protocols are unconditionally secure against various attacks such as the intercept-resend attack, the denial of service attack, and the man-in-the-middle attack. Additionally, theproposed CQD protocol is shown to be unconditionally secure against an untrusted service providerand both the protocols are shown more secure against the intercept resend attack as compared tothe qubit based LM05/DL04 protocol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا