ﻻ يوجد ملخص باللغة العربية
The magnetic anisotropy of La0.7Sr0.3MnO3 nanopowders was measured as a function of temperature by the modified singular point detection technique. In this method singularities indicating the anisotropy field were determined analyzing ac susceptibility data. The observed relationship between temperature dependence of anisotropy constant and temperature dependence of magnetization was used to deduce the origin of magnetic anisotropy in the nanopowders. It was shown that magnetic anisotropy of La0.7Sr0.3MnO3 nanopowder is determined by two-ion (dipolar or pseudodipolar) and single-ion mechanisms.
This letter reports on the magnetic properties of Ti1-xCoxO2 anatase phase nanopowders with different Co contents. It is shown that oxygen vacancies play a fundamental role in promoting the long-range ferromagnetic order in the material studied, in a
Ti-substituted perovskites, La0.7Sr0.3Mn1-xTixO3, with x between 0 to 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group
ZnCoO is one of the most studied and promising semiconductor materials for spintronics applications. In this work we discuss optical and electrical properties of ZnCoO films and nanoparticles grown at low temperature by either Atomic Layer Deposition
Transparent Al2O3 ceramics have attracted considerable interest for use in a wide range of optical, electronic and structural applications. The fabrication of these ceramics using powder metallurgy processes requires the development of theoretical ap
The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1-xCuxO3 (0 < x < 0.20) have been studied using neutron diffraction, magnetization and magnetoresistance (MR) measurements. All samples show the rhombohedra