ترغب بنشر مسار تعليمي؟ اضغط هنا

On some class of singular Sturm-Liouville problems

154   0   0.0 ( 0 )
 نشر من قبل Anton Vladimirov
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف A. A. Vladimirov




اسأل ChatGPT حول البحث

Sturm-Liouville spectral problem for equation $-(y/r)+qy=lambda py$ with generalized functions $rge 0$, $q$ and $p$ is considered. It is shown that the problem may be reduced to analogous problem with $requiv 1$. The case of $q=0$ and self-similar $r$ and $p$ is considered as an example.



قيم البحث

اقرأ أيضاً

Let $dot A$ be a densely defined, closed, symmetric operator in the complex, separable Hilbert space $mathcal{H}$ with equal deficiency indices and denote by $mathcal{N}_i = ker big(big(dot Abig)^* - i I_{mathcal{H}}big)$, $dim , (mathcal{N}_i)=kin m athbb{N} cup {infty}$, the associated deficiency subspace of $dot A$ . If $A$ denotes a self-adjoint extension of $dot A$ in $mathcal{H}$, the Donoghue $m$-operator $M_{A,mathcal{N}_i}^{Do} (, cdot ,)$ in $mathcal{N}_i$ associated with the pair $(A,mathcal{N}_i)$ is given by [ M_{A,mathcal{N}_i}^{Do}(z)=zI_{mathcal{N}_i} + (z^2+1) P_{mathcal{N}_i} (A - z I_{mathcal{H}})^{-1} P_{mathcal{N}_i} bigvert_{mathcal{N}_i},, quad zin mathbb{C} backslash mathbb{R}, ] with $I_{mathcal{N}_i}$ the identity operator in $mathcal{N}_i$, and $P_{mathcal{N}_i}$ the orthogonal projection in $mathcal{H}$ onto $mathcal{N}_i$. Assuming the standard local integrability hypotheses on the coefficients $p, q,r$, we study all self-adjoint realizations corresponding to the differential expression [ tau=frac{1}{r(x)}left[-frac{d}{dx}p(x)frac{d}{dx} + q(x)right] , text{ for a.e. $xin(a,b) subseteq mathbb{R}$,} ] in $L^2((a,b); rdx)$, and, as the principal aim of this paper, systematically construct the associated Donoghue $m$-functions (resp., $2 times 2$ matrices) in all cases where $tau$ is in the limit circle case at least at one interval endpoint $a$ or $b$.
We extend the classical boundary values begin{align*} & g(a) = - W(u_{a}(lambda_0,.), g)(a) = lim_{x downarrow a} frac{g(x)}{hat u_{a}(lambda_0,x)}, &g^{[1]}(a) = (p g)(a) = W(hat u_{a}(lambda_0,.), g)(a) = lim_{x downarrow a} frac{g(x) - g(a) hat u _{a}(lambda_0,x)}{u_{a}(lambda_0,x)} end{align*} for regular Sturm-Liouville operators associated with differential expressions of the type $tau = r(x)^{-1}[-(d/dx)p(x)(d/dx) + q(x)]$ for a.e. $xin[a,b] subset mathbb{R}$, to the case where $tau$ is singular on $(a,b) subseteq mathbb{R}$ and the associated minimal operator $T_{min}$ is bounded from below. Here $u_a(lambda_0, cdot)$ and $hat u_a(lambda_0, cdot)$ denote suitably normalized principal and nonprincipal solutions of $tau u = lambda_0 u$ for appropriate $lambda_0 in mathbb{R}$, respectively. We briefly discuss the singular Weyl-Titchmarsh-Kodaira $m$-function and finally illustrate the theory in some detail with the examples of the Bessel, Legendre, and Kummer (resp., Laguerre) operators.
The works of V. A. Vinokurov have shown that eigenvalues and normalized eigenfunctions of Sturm-Liouville problems are analytic in potentials, considered as mappings from the Lebesgue space to the space of real numbers and the Banach space of continu ous functions respectively. Moreover, the first-order Frechet derivatives are known and paly an important role in many problems. In this paper, we will find the second-order Frechet derivatives of eigenvalues in potentials, which are also proved to be negative definite quadratic forms for some cases.
109 - A.A. Vladimirov 2014
It is constructively proved that for class $A_{r,gamma}={qin L_{1,loc}(0,1): qleq 0, int_0^1 rq^gamma,dxleqslant 1}$, where $rin C[0,1]$ is uniformly positive weight and $gamma>1$, there exists a unique potential $hat qin A_{r,gamma}$ such that minim al eigenvalue $lambda_0(hat q)$ of boundary problem $$-y+hat qy=lambda y, y(0)=y(1)=0 $$ is equal to $M_{r,gamma}=sup_{qin A_{r,gamma}}lambda_0(q)$. For case $gamma=1$ we obtain that there exists a unique potential $hat qinGamma_{r,gamma}$ with analogous property. Here $Gamma_{r,gamma}$ is a closure of $A_{r,gamma}$ in the space $W_{2,loc}^{-1}(0,1)$ of generalized functions.
The spectrum of the singular indefinite Sturm-Liouville operator $$A=text{rm sgn}(cdot)bigl(-tfrac{d^2}{dx^2}+qbigr)$$ with a real potential $qin L^1(mathbb R)$ covers the whole real line and, in addition, non-real eigenvalues may appear if the poten tial $q$ assumes negative values. A quantitative analysis of the non-real eigenvalues is a challenging problem, and so far only partial results in this direction were obtained. In this paper the bound $$|lambda|leq |q|_{L^1}^2$$ on the absolute values of the non-real eigenvalues $lambda$ of $A$ is obtained. Furthermore, separate bounds on the imaginary parts and absolute values of these eigenvalues are proved in terms of the $L^1$-norm of the negative part of $q$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا