ﻻ يوجد ملخص باللغة العربية
We extend the classical boundary values begin{align*} & g(a) = - W(u_{a}(lambda_0,.), g)(a) = lim_{x downarrow a} frac{g(x)}{hat u_{a}(lambda_0,x)}, &g^{[1]}(a) = (p g)(a) = W(hat u_{a}(lambda_0,.), g)(a) = lim_{x downarrow a} frac{g(x) - g(a) hat u_{a}(lambda_0,x)}{u_{a}(lambda_0,x)} end{align*} for regular Sturm-Liouville operators associated with differential expressions of the type $tau = r(x)^{-1}[-(d/dx)p(x)(d/dx) + q(x)]$ for a.e. $xin[a,b] subset mathbb{R}$, to the case where $tau$ is singular on $(a,b) subseteq mathbb{R}$ and the associated minimal operator $T_{min}$ is bounded from below. Here $u_a(lambda_0, cdot)$ and $hat u_a(lambda_0, cdot)$ denote suitably normalized principal and nonprincipal solutions of $tau u = lambda_0 u$ for appropriate $lambda_0 in mathbb{R}$, respectively. We briefly discuss the singular Weyl-Titchmarsh-Kodaira $m$-function and finally illustrate the theory in some detail with the examples of the Bessel, Legendre, and Kummer (resp., Laguerre) operators.
We study perturbations of the self-adjoint periodic Sturm--Liouville operator [ A_0 = frac{1}{r_0}left(-frac{mathrm d}{mathrm dx} p_0 frac{mathrm d}{mathrm dx} + q_0right) ] and conclude under $L^1$-assumptions on the differences of the coefficient
Let $dot A$ be a densely defined, closed, symmetric operator in the complex, separable Hilbert space $mathcal{H}$ with equal deficiency indices and denote by $mathcal{N}_i = ker big(big(dot Abig)^* - i I_{mathcal{H}}big)$, $dim , (mathcal{N}_i)=kin m
The principal aim in this paper is to employ a recently developed unified approach to the computation of traces of resolvents and $zeta$-functions to efficiently compute values of spectral $zeta$-functions at positive integers associated to regular (
Considering singular Sturm--Liouville differential expressions of the type [ tau_{alpha} = -(d/dx)x^{alpha}(d/dx) + q(x), quad x in (0,b), ; alpha in mathbb{R}, ] we employ some Sturm comparison-type results in the spirit of Kurss to derive criteria
We derive explicit Krein resolvent identities for generally singular Sturm-Liouville operators in terms of boundary condition bases and the Lagrange bracket. As an application of the resolvent identities obtained, we compute the trace of the resolven