ﻻ يوجد ملخص باللغة العربية
The Lyman-alpha (Lya) emission has played an important role in detecting high-redshift galaxies, including recently distant ones at redshift z > 7. It may also contain important information on the origin of these galaxies. Here, we investigate the formation of a typical L* galaxy and its observational signatures at the earliest stage, by combining a cosmological hydrodynamic simulation with three-dimensional radiative transfer calculations using the newly improved ART^2 code. Our cosmological simulation uses the Aquila initial condition which zooms in onto a Milky Way-like halo with high resolutions, and our radiative transfer couples multi-wavelength continuum, Lya line, and ionization of hydrogen. We find that the modeled galaxy starts to form at redshift z ~ 24 through efficient accretion of cold gas, which produces a strong Lya line with a luminosity of L(Lya) ~ 10^42 erg/s as early as z ~ 14. The Lya emission appears to trace the cold, dense gas. The lines exhibit asymmetric, single-peak profiles, and are shifted to the blue wing, a characteristic feature of gas inflow. Moreover, the contribution to the total Lya luminosity by excitation cooling increases with redshift, and it becomes dominant at z >~ 6. We predict that L* galaxies such as the modeled one may be detected at z <~ 8 by JWST and ALMA with a reasonable integration time. Beyond redshift 12, however, only Lya line may be observable by spectroscopic surveys. Our results suggest that Lya line is one of the most powerful tools to detect the first generation of galaxies, and to decipher their formation mechanism.
{Abridged} We investigate the observability of cold accretion streams at redshift 3 via Lyman-alpha (Lya) emission and the feasibility of cold accretion as the main driver of Lya blobs (LABs). We run cosmological zoom simulations focusing on 3 halos
We report new HST COS and STIS spectroscopy of a star-forming region (~100 solar masses/year) in the center of the X-ray cluster RXJ1532.9+3021 (z=0.362), to follow-up the CLASH team discovery of luminous UV filaments and knots in the central massive
The forest of Lyman-alpha absorption lines seen in the spectra of distant quasars has become an important probe of the distribution of matter in the Universe. We use large, hydrodynamical simulations from the OWLS project to investigate the effect of
High-redshift Lyman-alpha blobs (LABs) are an enigmatic class of objects that have been the subject of numerous observational and theoretical investigations. It is of particular interest to determine the dominant power sources for the copious luminos
We present diffuse Lyman-alpha halos (LAHs) identified in the composite Subaru narrowband images of 100-3600 Lyman-alpha emitters (LAEs) at z=2.2, 3.1, 3.7, 5.7, and 6.6. First, we carefully examine potential artifacts mimicking LAHs that include a l