ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of feedback from galaxy formation on the Lyman-alpha transmitted flux

132   0   0.0 ( 0 )
 نشر من قبل Matteo Viel
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The forest of Lyman-alpha absorption lines seen in the spectra of distant quasars has become an important probe of the distribution of matter in the Universe. We use large, hydrodynamical simulations from the OWLS project to investigate the effect of feedback from galaxy formation on the probability distribution function and the power spectrum of the Lyman-alpha transmitted flux. While metal-line cooling is unimportant, both galactic outflows from massive galaxies driven by active galactic nuclei and winds from low-mass galaxies driven by supernovae have a substantial impact on the flux statistics. At redshift z=2.25, the effects on the flux statistics are of a similar magnitude as the statistical uncertainties of published data sets. The changes in the flux statistics are not due to differences in the temperature-density relation of the photo-ionised gas. Instead, they are caused by changes in the density distribution and in the fraction of hot, collisionally ionised gas. It may be possible to disentangle astrophysical and cosmological effects by taking advantage of the fact that they induce different redshift dependencies. In particular, the magnitude of the feedback effects appears to decrease rapidly with increasing redshift. Analyses of Lyman-alpha forest data from surveys that are currently in process, such as BOSS/SDSS-III and X-Shooter/VLT, must take galactic winds into account.



قيم البحث

اقرأ أيضاً

The lya forest at high redshifts is a powerful probe of reionization. Modeling and observing this imprint comes with significant technical challenges: inhomogeneous reionization must be taken into account while simultaneously being able to resolve th e web-like small-scale structure prior to reionization. In this work we quantify the impact of inhomogeneous reionization on the lya forest at lower redshifts ($2 < z < 4$), where upcoming surveys such as DESI will enable precision measurements of the flux power spectrum. We use both small box simulations capable of handling the small-scale structure of the lya forest and semi-numerical large box simulations capable of representing the effects of inhomogeneous reionization. We find that inhomogeneous reionization could produce a measurable effect on the lya forest power spectrum. The deviation in the 3D power spectrum at $z_{rm obs} = 4$ and $k = 0.14 rm{Mpc}^{-1}$ ranges from $19 - 36%$, with a larger effect for later reionization. The corrections decrease to $2.0 - 4.1%$ by $z_{rm obs} = 2$. The impact on the 1D power spectrum is smaller, and ranges from $3.3 - 6.5%$ at $z_{rm obs}=4$ to $0.35 - 0.75%$ at $z_{rm obs}=2$, values which are comparable to the statistical uncertainties in current and upcoming surveys. Furthermore, we study how can this systematic be constrained with the help of the quadrupole of the 21 cm power spectrum.
We compute the z = 3 neutral hydrogen column density distribution function f(NHI) for 19 simulations drawn from the OWLS project using a post-processing correction for self-shielding calculated with full radiative transfer of the ionising background radiation. We investigate how different physical processes and parameters affect the abundance of Lyman-limit systems (LLSs) and damped Lyman-alpha absorbers (DLAs) including: i) metal-line cooling; ii) the efficiency of feedback from SNe and AGN; iii) the effective equation of state for the ISM; iv) cosmological parameters; v) the assumed star formation law and; vi) the timing of hydrogen reionization . We find that the normalisation and slope, D = d log10 f /d log10 NHI, of f(NHI) in the LLS regime are robust to changes in these physical processes. Among physically plausible models, f(NHI) varies by less than 0.2 dex and D varies by less than 0.18 for LLSs. This is primarily due to the fact that these uncertain physical processes mostly affect star-forming gas which contributes less than 10% to f(NHI) in the the LLS column density range. At higher column densities, variations in f(NHI) become larger (approximately 0.5 dex at NHI = 10^22 cm^-2 and 1.0 dex at NHI = 10^23 cm^-2) and molecular hydrogen formation also becomes important. Many of these changes can be explained in the context of self-regulated star formation in which the amount of star forming gas in a galaxy will adjust such that outflows driven by feedback balance inflows due to accretion. Data and code to reproduce all figures can be found at the following url: https://bitbucket.org/galtay/hi-cddf-owls-1
We use the probability distribution function (PDF) of the lya forest flux at z=2-3, measured from high-resolution UVES/VLT data, and hydrodynamical simulations to obtain constraints on cosmological parameters and the thermal state of the intergalacti c medium (IGM) at z 2-3. The observed flux PDF at z=3 alone results in constraints on cosmological parameters in good agreement with those obtained from the WMAP data, albeit with about a factor two larger errors. The observed flux PDF is best fit with simulations with a matter fluctuation amplitude of sigma_8=0.8-0.85 pm 0.07 and an inverted IGM temperature-density relation (gamma ~ 0.5-0.75), consistent with our previous results obtained using a simpler analysis. These results appear to be robust to uncertainties in the quasar (QSO) continuum placement. We further discuss constraints obtained by a combined analysis of the high-resolution flux PDF and the power spectrum measured from the Sloan Digital Sky Survey (SDSS) lya forest data. The joint analysis confirms the suggestion of an inverted temperature-density relation, but prefers somewhat higher values (sigma_8 ~ 0.9) of the matter fluctuation amplitude than the WMAP data and the best fit to the flux PDF alone. The joint analysis of the flux PDF and power spectrum (as well as an analysis of the power spectrum data alone) prefers rather large values for the temperature of the IGM, perhaps suggesting that we have identified a not yet accounted for systematic error in the SDSS flux power spectrum data or that the standard model describing the thermal state of the IGM at z ~ 2-3 is incomplete.
Ly$alpha$ photons scattered by neutral hydrogen atoms in the circumgalactic media or produced in the halos of star-forming galaxies are expected to lead to extended Ly$alpha$ emission around galaxies. Such low surface brightness Ly$alpha$ halos (LAHs ) have been detected by stacking Ly$alpha$ images of high-redshift star-forming galaxies. We study the origin of LAHs by performing radiative transfer modeling of nine $z=3.1$ Lyman-Alpha Emitters (LAEs) in a high resolution hydrodynamic cosmological galaxy formation simulation. We develop a method of computing the mean Ly$alpha$ surface brightness profile of each LAE by effectively integrating over many different observing directions. Without adjusting any parameters, our model yields an average Ly$alpha$ surface brightness profile in remarkable agreement with observations. We find that observed LAHs cannot be accounted for solely by photons originating from the central LAE and scattered to large radii by hydrogen atoms in the circumgalactic gas. Instead, Ly$alpha$ emission from regions in the outer halo is primarily responsible for producing the extended LAHs seen in observations, which potentially includes both star-forming and cooling radiation. With the limit on the star formation contribution set by the ultra-violet (UV) halo measurement, we find that cooling radiation can play an important role in forming the extended LAHs. We discuss the implications and caveats of such a picture.
We investigate the consequences of applying different star formation laws in the galaxy formation model GALFORM. Three broad star formation laws are implemented: the empirical relations of Kennicutt and Schmidt and Blitz & Rosolowsky and the theoreti cal model of Krumholz, McKee & Tumlinson. These laws have no free parameters once calibrated against observations of the star formation rate (SFR) and gas surface density in nearby galaxies. We start from published models, and investigate which observables are sensitive to a change in the star formation law, without altering any other model parameters. We show that changing the star formation law (i) does not significantly affect either the star formation history of the universe or the galaxy luminosity functions in the optical and near-IR, due to an effective balance between the quiescent and burst star formation modes; (ii) greatly affects the cold gas contents of galaxies; (iii) changes the location of galaxies in the SFR versus stellar mass plane, so that a second sequence of passive galaxies arises, in addition to the known active sequence. We show that this plane can be used to discriminate between the star formation laws.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا