ﻻ يوجد ملخص باللغة العربية
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), eMERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), Meerkat (South Africa), and the Murchison Widefield Array (MWA). Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
One of the five key science projects for the Square Kilometre Array (SKA) is The Origin and Evolution of Cosmic Magnetism, in which radio polarimetry will be used to reveal what cosmic magnets look like and what role they have played in the evolving
The Square Kilometre Array (SKA) is a planned large radio interferometer designed to operate over a wide range of frequencies, and with an order of magnitude greater sensitivity and survey speed than any current radio telescope. The SKA will address
We explore the potential use of the Radio Continuum (RC) survey conducted by the Square Kilometre Array (SKA) to remove (delens) the lensing-induced B-mode polarization and thus enhance future cosmic microwave background (CMB) searches for inflationa
The era of the Square Kilometre Array is almost upon us, and pathfinder telescopes are already in operation. This brief review summarizes our current knowledge of extragalactic radio sources, accumulated through six decades of continuum surveys at th
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation,