ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Magnetism with the Square Kilometre Array and its Pathfinders

150   0   0.0 ( 0 )
 نشر من قبل Bryan Gaensler
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bryan M. Gaensler




اسأل ChatGPT حول البحث

One of the five key science projects for the Square Kilometre Array (SKA) is The Origin and Evolution of Cosmic Magnetism, in which radio polarimetry will be used to reveal what cosmic magnets look like and what role they have played in the evolving Universe. Many of the SKA prototypes now being built are also targeting magnetic fields and polarimetry as key science areas. Here I review the prospects for innovative new polarimetry and Faraday rotation experiments with forthcoming facilities such as ASKAP, LOFAR, the ATA, the EVLA, and ultimately the SKA. Sensitive wide-field polarisation surveys with these telescopes will provide a dramatic new view of magnetic fields in the Milky Way, in nearby galaxies and clusters, and in the high-redshift Universe.



قيم البحث

اقرأ أيضاً

In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), eMERLIN (UK), VLA (USA), e-EVN (ba sed in Europe), LOFAR (The Netherlands), Meerkat (South Africa), and the Murchison Widefield Array (MWA). Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and Dark Matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in the light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.
The Square Kilometre Array will revolutionize pulsar studies with its wide field-of-view, wide-band observation and high sensitivity, increasing the number of observable pulsars by more than an order of magnitude. Pulsars are of interest not only for the study of neutron stars themselves but for their usage as tools for probing fundamental physics such as general relativity, gravitational waves and nuclear interaction. In this article, we summarize the activity and interests of SKA-Japan Pulsar Science Working Group, focusing on an investigation of modified gravity theory with the supermassive black hole in the Galactic Centre, gravitational-wave detection from cosmic strings and binary supermassive black holes, a study of the physical state of plasma close to pulsars using giant radio pulses and determination of magnetic field structure of Galaxy with pulsar pairs.
The Square Kilometre Array (SKA) will be both the largest radio telescope ever constructed and the largest Big Data project in the known Universe. The first phase of the project will generate on the order of 5 zettabytes of data per year. A critical task for the SKA will be its ability to process data for science, which will need to be conducted by science pipelines. Together with polarization data from the LOFAR Multifrequency Snapshot Sky Survey (MSSS), we have been developing a realistic SKA-like science pipeline that can handle the large data volumes generated by LOFAR at 150 MHz. The pipeline uses task-based parallelism to image, detect sources, and perform Faraday Tomography across the entire LOFAR sky. The project thereby provides a unique opportunity to contribute to the technological development of the SKA telescope, while simultaneously enabling cutting-edge scientific results. In this paper, we provide an update on current efforts to develop a science pipeline that can enable tight constraints on the magnetised large-scale structure of the Universe.
We review the current status of the Square Kilometre Array (SKA) by outlining the science drivers for its Phase-1 (SKA1) and setting out the timeline for the key decisions and milestones on the way to the planned start of its construction in 2016. We explain how Phase-2 SKA (SKA2) will transform the research scope of the SKA infrastructure, placing it amongst the great astronomical observatories and survey instruments of the future, and opening up new areas of discovery, many beyond the confines of conventional astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا