ﻻ يوجد ملخص باللغة العربية
In this paper, we study a notion of what we call vertex Leibniz algebra. This notion naturally extends that of vertex algebra without vacuum, which was previously introduced by Huang and Lepowsky. We show that every vertex algebra without vacuum can be naturally extended to a vertex algebra. On the other hand, we show that a vertex Leibniz algebra can be embedded into a vertex algebra if and only if it admits a faithful module. To each vertex Leibniz algebra we associate a vertex algebra without vacuum which is universal to the forgetful functor. Furthermore, from any Leibniz algebra $g$ we construct a vertex Leibniz algebra $V_{g}$ and show that $V_{g}$ can be embedded into a vertex algebra if and only if $g$ is a Lie algebra.
Let $A$ be a finite dimensional unital commutative associative algebra and let $B$ be a finite dimensional vertex $A$-algebroid such that its Levi factor is isomorphic to $sl_2$. Under suitable conditions, we construct an indecomposable non-simple $m
In this paper, we study Virasoro vertex algebras and affine vertex algebras over a general field of characteristic $p>2$. More specifically, we study certain quotients of the universal Virasoro and affine vertex algebras by ideals related to the $p$-
We construct two non-semisimple braided ribbon tensor categories of modules for each singlet vertex operator algebra $mathcal{M}(p)$, $pgeq 2$. The first category consists of all finite-length $mathcal{M}(p)$-modules with atypical composition factors
A theory of quasi modules at infinity for (weak) quantum vertex algebras including vertex algebras was previously developed in cite{li-infinity}. In this current paper, quasi modules at infinity for vertex algebras are revisited. Among the main resul
In this paper, we study contragredient duals and invariant bilinear forms for modular vertex algebras (in characteristic $p$). We first introduce a bialgebra $mathcal{H}$ and we then introduce a notion of $mathcal{H}$-module vertex algebra and a noti