ﻻ يوجد ملخص باللغة العربية
We construct two non-semisimple braided ribbon tensor categories of modules for each singlet vertex operator algebra $mathcal{M}(p)$, $pgeq 2$. The first category consists of all finite-length $mathcal{M}(p)$-modules with atypical composition factors, while the second is the subcategory of modules that induce to local modules for the triplet vertex operator algebra $mathcal{W}(p)$. We show that every irreducible module has a projective cover in the second of these categories, although not in the first, and we compute all fusion products involving atypical irreducible modules and their projective covers.
We define and systematically study nonassociative C*-algebras as C*-algebras internal to a topological tensor category. We also offer a concrete approach to these C*-algebras, as G-invariant, norm closed *-subalgebras of bounded operators on a G-Hilb
Let $V$ be an $mathbb{N}$-graded, simple, self-contragredient, $C_2$-cofinite vertex operator algebra. We show that if the $S$-transformation of the character of $V$ is a linear combination of characters of $V$-modules, then the category $mathcal{C}$
Let $Vsubseteq A$ be a conformal inclusion of vertex operator algebras and let $mathcal{C}$ be a category of grading-restricted generalized $V$-modules that admits the vertex algebraic braided tensor category structure of Huang-Lepowsky-Zhang. We giv
We show that direct limit completions of vertex tensor categories inherit vertex and braided tensor category structures, under conditions that hold for example for all known Virasoro and affine Lie algebra tensor categories. A consequence is that the
This is part one of a two-part work that relates two different approaches to two-dimensional open-closed rational conformal field theory. In part one we review the definition of a Cardy algebra, which captures the necessary consistency conditions of