ترغب بنشر مسار تعليمي؟ اضغط هنا

Degeneracies in parametrized modified gravity models

143   0   0.0 ( 0 )
 نشر من قبل Alireza Hojjati
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alireza Hojjati




اسأل ChatGPT حول البحث

We study degeneracies between parameters in some of the widely used parametrized modified gravity models. We investigate how different observables from a future photometric weak lensing survey such as LSST, correlate the effects of these parameters and to what extent the degeneracies are broken. We also study the impact of other degenerate effects, namely massive neutrinos and some of the weak lensing systematics, on the correlations.



قيم البحث

اقرأ أيضاً

We explore the cosmological implications of five modified gravity (MG) models by using the recent cosmological observational data, including the recently released SNLS3 type Ia supernovae sample, the cosmic microwave background anisotropy data from t he Wilkinson Microwave Anisotropy Probe 7-yr observations, the baryon acoustic oscillation results from the Sloan Digital Sky Survey data release 7, and the latest Hubble constant measurement utilizing the Wide Field Camera 3 on the Hubble Space Telescope. The MG models considered include the Dvali-Gabadadze-Porrati(DGP) model, two $f(R)$ models, and two $f(T)$ models. We find that compared with the $Lambda$CDM model, MG models can not lead to a appreciable reduction of the $chi^2_{min}$. The analysis of AIC and BIC shows that the simplest cosmological constant model($Lambda$CDM) is still most preferred by the current data, and the DGP model is strongly disfavored. In addition, from the observational constraints, we also reconstruct the evolutions of the growth factor in these models. We find that the current available growth factor data are not enough to distinguish these MG models from the $Lambda$CDM model.
We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely $f(R)$ gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to $Lambda$CDM even when using a fairly small number of COLA time steps.
Joint lensing and dynamical mass profile determinations of galaxy clusters are an excellent tool to constrain modification of gravity at cosmological scales. However, search for tiny departures from General Relativity calls for an accurate control of the systematics affecting the method. In this analysis we concentrate on the systematics in the reconstruction of mass profiles from the dynamics of cluster member galaxies, while assuming that lensing provides unbiased mass profile reconstructions. In particular, in the case study of linear $f(R)$ gravity, we aim at veryfying whether in realistic simulations of cluster formation a spurious detection of departure from GR can be detected due to violation of the main assumptions (e.g. dynamical equilibrium and spherical symmetry) on which the method is based. We aim at identifying and calibrating the impact of those systematics by analyzing a set of Dark Matter halos taken from $Lambda$CDM N-body cosmological simulations performed with the GADGET-3 code. [...] If no selection criteria are applied, $sim 60%$ of clusters in a $Lambda$CDM Universe (where GR is assumed) produce a spurious detection of modified gravity. We find that the probability of finding cluster in agreement with GR predictions $P_{GR}$ mainly depends on the properties of the halos projected phase-space and on shape orientation of the cluster along the line-of-sight projection. We define two observational criteria which correlate with the probability to find clusters in agreement with GR predictions and which can be used to select [...] those objects that are more suitable for the application of the proposed method. In particular, we find that according to these criteria the percentage of spurious detection can be lowered down to $sim 20%$ in the best case. Our results are relevant in view of data that will be available with the next generation surveys.
At linear order in cosmological perturbations, departures from the growth in the cosmological standard model can be quantified in terms of two functions of redshift $z$ and Fourier number $k$. Previous studies have performed principal component forec asts for several choices of these two functions, based on expected capabilities of upcoming large structure surveys. It is typically found that there will be many well-constrained degrees of freedom. However, not all and, probably most, of these degrees of freedom were physical if the parametrization had allowed for an arbitrary $k$-dependence. In this paper, we restrict the $k$-dependence to that allowed in local theories of gravity under the quasi-static approximation, i.e. ratios of polynomials in $k$, and identify the best constrained features in the ($z$,$k$)-dependence of the commonly considered functions $mu$ and $gamma$ as measured by an LSST-like weak lensing survey. We estimate the uncertainty in the measurements of the eigenmodes of modified growth. We find that imposing the theoretical prior on $k$-dependence reduces the number of degrees of freedom and the covariance between parameters. On the other hand, imaging surveys like LSST are not as sensitive to the $z$-dependence as they are to the $k$-dependence of the modified growth functions. This trade off provides us with, more or less, the same number of well-constrained eigenmodes (with respect to our prior) as found before, but now these modes are physical.
We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on $f(R)$ and {it Generalized Dilaton} models of modified gravity. This is highly complimentary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General-Relativity + $Lambda$CDM scenario occurs at $ksim1 h mbox{Mpc}^{-1}$. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parameterization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing $xi_{pm}$ quantity. Confronted against the cosmic shear data, we reject the $f(R)$ ${ |f_{R_0}|=10^{-4}, n=1}$ model with more than 99.9% confidence interval (CI) when assuming a $Lambda$CDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2eV, the model is disfavoured with at least 94% CI in all different combinations studied. Constraints on the ${ |f_{R_0}|=10^{-4}, n=2}$ model are weaker, but nevertheless disfavoured with at least 89% CI. We identify several specific combinations of neutrino mass, baryon feedback and $f(R)$ or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا