ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing modified gravity models with recent cosmological observations

177   0   0.0 ( 0 )
 نشر من قبل Wen-Shuai Zhang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the cosmological implications of five modified gravity (MG) models by using the recent cosmological observational data, including the recently released SNLS3 type Ia supernovae sample, the cosmic microwave background anisotropy data from the Wilkinson Microwave Anisotropy Probe 7-yr observations, the baryon acoustic oscillation results from the Sloan Digital Sky Survey data release 7, and the latest Hubble constant measurement utilizing the Wide Field Camera 3 on the Hubble Space Telescope. The MG models considered include the Dvali-Gabadadze-Porrati(DGP) model, two $f(R)$ models, and two $f(T)$ models. We find that compared with the $Lambda$CDM model, MG models can not lead to a appreciable reduction of the $chi^2_{min}$. The analysis of AIC and BIC shows that the simplest cosmological constant model($Lambda$CDM) is still most preferred by the current data, and the DGP model is strongly disfavored. In addition, from the observational constraints, we also reconstruct the evolutions of the growth factor in these models. We find that the current available growth factor data are not enough to distinguish these MG models from the $Lambda$CDM model.



قيم البحث

اقرأ أيضاً

Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particula r, the modification in the tensor sector gives rise to a notion of gravitational-wave (GW) luminosity distance, different from the standard electromagnetic luminosity distance, that can be studied with standard sirens at GW detectors such as LISA or third-generation ground based experiments. We discuss the predictions for modified GW propagation from some of the best studied theories of modified gravity, such as Horndeski or the more general degenerate higher order scalar-tensor (DHOST) theories, non-local infrared modifications of gravity, bigravity theories and the corresponding phenomenon of GW oscillation, as well as theories with extra or varying dimensions. We show that modified GW propagation is a completely generic phenomenon in modified gravity. We then use a simple parametrization of the effect in terms of two parameters $(Xi_0,n)$, that is shown to fit well the results from a large class of models, to study the prospects of observing modified GW propagation using supermassive black hole binaries as standard sirens with LISA. We construct mock source catalogs and perform detailed Markov Chain Monte Carlo studies of the likelihood obtained from LISA standard sirens alone, as well as by combining them with CMB, BAO and SNe data to reduce the degeneracies between cosmological parameters. We find that the combination of LISA with the other cosmological datasets allows one to measure the parameter $Xi_0$ that characterizes modified GW propagation to the percent level accuracy, sufficient to test several modified gravity theories. [Abridged]
We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on $f(R)$ and {it Generalized Dilaton} models of modified gravity. This is highly complimentary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General-Relativity + $Lambda$CDM scenario occurs at $ksim1 h mbox{Mpc}^{-1}$. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parameterization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing $xi_{pm}$ quantity. Confronted against the cosmic shear data, we reject the $f(R)$ ${ |f_{R_0}|=10^{-4}, n=1}$ model with more than 99.9% confidence interval (CI) when assuming a $Lambda$CDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2eV, the model is disfavoured with at least 94% CI in all different combinations studied. Constraints on the ${ |f_{R_0}|=10^{-4}, n=2}$ model are weaker, but nevertheless disfavoured with at least 89% CI. We identify several specific combinations of neutrino mass, baryon feedback and $f(R)$ or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.
Most of the information on our cosmos stems from either late-time observations or the imprint of early-time inhomogeneities on the cosmic microwave background. We explore to what extent early modifications of gravity, which become significant after r ecombination but then decay towards the present, can be constrained by current cosmological observations. For the evolution of the gravitational modification, we adopt the decaying mode of a hybrid-metric Palatini $f(mathcal{R})$ gravity model which is designed to reproduce the standard cosmological background expansion history and due to the decay of the modification is naturally compatible with Solar-System tests. We embed the model in the effective field theory description of Horndeski scalar-tensor gravity with an early-time decoupling of the gravitational modification. Since the quasistatic approximation for the perturbations in the model breaks down at high redshifts, where modifications remain relevant, we introduce a computationally efficient correction to describe the evolution of the scalar field fluctuation in this regime. We compare the decaying early-time modification against geometric probes and recent Planck measurements and find no evidence for such effects in the observations. Current data constrains the scalar field value at $|f_{mathcal{R}}(z=z_{rm on})| lesssim 10^{-2}$ for modifications introduced at redshifts $z_{rm on}sim(500-1000)$ with present-day value $|f_{mathcal{R}0}|lesssim10^{-8}$. Finally, we comment on constraints that will be achievable with future 21~cm surveys and gravitational wave experiments.
Ultra-light bosons as dark matter has become a model of major interest in Cosmology, due to the possible imprint of a distinct signature in the cosmic structure both at the linear and non-linear scales. In this work we show that the equations of moti on for density perturbations for this kind of models can be written in terms of a modified gravitational potential. Taking advantage of this parallelism, we use the MG-PICOLA code originally developed for modified gravity models to evolve the density field of axion models with and without self-interaction. Our results indicate that the quantum potential adds extra suppression of power at the non-linear level, and it is even capable of smoothing any bumpy features initially present in the mass power spectrum.
142 - Alireza Hojjati 2012
We study degeneracies between parameters in some of the widely used parametrized modified gravity models. We investigate how different observables from a future photometric weak lensing survey such as LSST, correlate the effects of these parameters a nd to what extent the degeneracies are broken. We also study the impact of other degenerate effects, namely massive neutrinos and some of the weak lensing systematics, on the correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا