ترغب بنشر مسار تعليمي؟ اضغط هنا

Symbiotic two-component gap solitons

180   0   0.0 ( 0 )
 نشر من قبل Thawatchai Mayteevarunyoo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a two-component one-dimensional model of gap solitons (GSs), which is based on two nonlinear Schrodinger equations, coupled by repulsive XPM (cross-phase-modulation) terms, in the absence of the SPM (self-phase-modulation) nonlinearity. The equations include a periodic potential acting on both components, thus giving rise to GSs of the symbiotic type, which exist solely due to the repulsive interaction between the two components. The model may be implemented for holographic solitons in optics, and in binary bosonic or fermionic gases trapped in the optical lattice. Fundamental symbiotic GSs are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. Symmetric solitons are destabilized, including their entire family in the second bandgap, by symmetry-breaking perturbations above a critical value of the total power. Asymmetric solitons of intra-gap and inter-gap types are studied too, with the propagation constants of the two components falling into the same or different bandgaps, respectively. The increase of the asymmetry between the components leads to shrinkage of the stability areas of the GSs. Inter-gap GSs are stable only in a strongly asymmetric form, in which the first-bandgap component is a dominating one. Intra-gap solitons are unstable in the second bandgap. Unstable two-component GSs are transformed into persistent breathers. In addition to systematic numerical considerations, analytical results are obtained by means of an extended (tailed) Thomas-Fermi approximation (TFA).



قيم البحث

اقرأ أيضاً

We study coupled unstaggered-staggered soliton pairs emergent from a system of two coupled discrete nonlinear Schr{o}dinger (DNLS) equations with the self-attractive on-site self-phase-modulation nonlinearity, coupled by the repulsive cross-phase-mod ulation interaction, on 1D and 2D lattice domains. These mixed modes are of a symbiotic type, as each component in isolation may only carry ordinary unstaggered solitons. While most work on DNLS systems addressed symmetric on-site-centered fundamental solitons, these models give rise to a variety of other excited states, which may also be stable. The simplest among them are antisymmetric states in the form of discrete twisted solitons, which have no counterparts in the continuum limit. In the extension to 2D lattice domains, a natural counterpart of the twisted states are vortical solitons. We first introduce a variational approximation (VA) for the solitons, and then correct it numerically to construct exact stationary solutions, which are then used as initial conditions for simulations to check if the stationary states persist under time evolution. Two-component solutions obtained include (i) 1D fundamental-twisted and twisted-twisted soliton pairs, (ii) 2D fundamental-fundamental soliton pairs, and (iii) 2D vortical-vortical soliton pairs. We also highlight a variety of other transient dynamical regimes, such as breathers and amplitude death. The findings apply to modeling binary Bose-Einstein condensates, loaded in a deep lattice potential, with identical or different atomic masses of the two components, and arrays of bimodal optical waveguides.
We theoretically introduce a new type of topological dipole solitons propagating in a Floquet topological insulator based on a kagome array of helical waveguides. Such solitons bifurcate from two edge states belonging to different topological gaps an d have bright envelopes of different symmetries: fundamental for one component, and dipole for the other. The formation of dipole solitons is enabled by unique spectral features of the kagome array which allow the simultaneous coexistence of two topological edge states from different gaps at the same boundary. Notably, these states have equal and nearly vanishing group velocities as well as the same sign of the effective dispersion coefficients. We derive envelope equations describing components of dipole solitons and demonstrate in full continuous simulations that such states indeed can survive over hundreds of helix periods without any noticeable radiation into the bulk.
In this chapter we review recent results concerning localized and extended dissipative solutions of the discrete complex Ginzburg-Landau equation. In particular, we discuss discrete diffraction effects arising both from linear and nonlinear propertie s, the existence of self-localized dissipative solitons in the presence of cubic-quintic terms and modulational instability induced by saturable nonlinearities. Dynamical stability properties of localized and extended dissipative discrete solitons are also discussed.
We consider a one-dimensional model of a two-component Bose-Einstein condensate in the presence of periodic external potentials of opposite signs, acting on the two species. The interaction between the species is attractive, while intra-species inter actions may be attractive too [the system of the right-bright (BB) type], or of opposite signs in the two components [the gap-bright (GB) model]. We identify the existence and stability domains for soliton complexes of the BB and GB types. The evolution of unstable solitons leads to the establishment of oscillatory states. The increase of the strength of the nonlinear attraction between the species results in symbiotic stabilization of the complexes, despite the fact that one component is centered around a local maximum of the respective periodic potential.
284 - Nir Dror , Boris A. Malomed 2011
Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BECs) loaded into optical lattices, are often described by the nonlinear Schrodinger/Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model based on such a periodic potential, with the nonlinearity (attractive or repulsive) concentrated either at a single point or at a symmetric set of two points, which are represented, respectively, by a single {delta}-function or a combination of two {delta}-functions. This model gives rise to ordinary solitons or gap solitons (GSs), which reside, respectively, in the semi-infinite or finite gaps of the systems linear spectrum, being pinned to the {delta}-functions. Physical realizations of these systems are possible in optics and BEC, using diverse variants of the nonlinearity management. First, we demonstrate that the single {delta}-function multiplying the nonlinear term supports families of stable regular solitons in the self-attractive case, while a family of solitons supported by the attractive {delta}-function in the absence of the periodic potential is completely unstable. We also show that the {delta}-function can support stable GSs in the first finite gap in both the self-attractive and repulsive models. The stability analysis for the GSs in the second finite gap is reported too, for both signs of the nonlinearity. Alongside the numerical analysis, analytical approximations are developed for the solitons in the semi-infinite and first two finite gaps, with the single {delta}-function positioned at a minimum or maximum of the periodic potential. In the model with the symmetric set of two {delta}-functions, we study the effect of the spontaneous symmetry breaking of the pinned solitons. Two configurations are considered, with the {delta}-functions set symmetrically with respect to the minimum or maximum of the potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا