ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra low density of CdTe quantum dots grown by MBE

365   0   0.0 ( 0 )
 نشر من قبل Jakub Kobak
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents methods of controlling the density of self-assembled CdTe quantum dots (QDs) grown by molecular beam epitaxy. Two approaches are discussed: increasing the deposition temperature of CdTe and the reduction of CdTe layer thickness. Photoluminescence (PL) measurements at low temperature confirms that both methods can be used for significant reduction of QDs density from 10$^{10}$QD/cm$^2$ to 10$^7$-10$^8$QD/cm$^2$. For very low QDs density, identification of all QDs lines observed in the spectrum is possible.



قيم البحث

اقرأ أيضاً

390 - Matthias Opel 2011
The recent study of oxides led to the discovery of several new fascinating physical phenomena. High-temperature superconductivity, colossal magnetoresistance, dilute magnetic doping, or multiferroicity were discovered and investigated in transition-m etal oxides, representing a prototype class of strongly correlated electronic systems. This development was accompanied by an enormous progress regarding thin film fabrication. Within the past two decades, epitaxial thin films with crystalline quality approaching semiconductor standards became available using laser molecular beam epitaxy. This evolution is reviewed, particularly with emphasis on transition-metal oxide thin films, their versatile physical properties, and their impact on the field of spintronics. First, the physics of ferromagnetic half-metallic oxides, such as the doped manganites, the double perovskites and magnetite is presented together with possible applications based on magnetic tunnel junctions. Second, the wide bandgap semiconductor zinc oxide is discussed particularly with regard to the controversy of dilute magnetic doping with transition-metal ions and the possibility of realizing p-type conductivity. Third, the field of oxide multiferroics is presented with the recent developments in single-phase multiferroic thin film perovskites as well as in composite multiferroic hybrids.
80 - V. Tiwari , K. Makita , M. Arino 2020
We demonstrate radio-frequency tuning of the energy of individual CdTe/ZnTe quantum dots (QDs) by Surface Acoustic Waves (SAWs). Despite the very weak piezoelectric coefficient of ZnTe, SAW in the GHz range can be launched on a ZnTe surface using int erdigitated transducers deposited on a c-axis oriented ZnO layer grown on ZnTe containing CdTe QDs. The photoluminescence (PL) of individual QDs is used as a nanometer-scale sensor of the acoustic strain field. The energy of QDs is modulated by SAW in the GHz range and leads to characteristic broadening of time-integrated PL spectra. The dynamic modulation of the QD PL energy can also be detected in the time domain using phase-locked time domain spectroscopy. This technique is in particular used for monitoring complex local acoustic fields resulting from the superposition of two or more SAW pulses in a cavity. Under magnetic field, the dynamic spectral tuning of a single QD by SAW can be used to generate single photons with alternating circular polarization controlled in the GHz range.
Using a combination of continuous wave and time-resolved spectroscopy, we study the effects of interfacial conditions on the radiative lifetimes and photoluminescence intensities of colloidal CdTe/CdS quantum dots (QDs) embedded in a three-dimensiona l nanostructured silicon (NSi) matrix. The NSi matrix was thermally oxidized under different conditions to change the interfacial oxide thickness. QDs embedded in a NSi matrix with ~0.5 nm of interfacial oxide exhibited reduced photoluminescence intensity and nearly five times shorter radiative lifetimes (~16 ns) compared to QDs immobilized within completely oxidized, nanostructured silica (NSiO2) frameworks (~78 ns). Optical absorption by the sub-nm oxidized NSi matrix partially lowers QD emission intensities while non-radiative carrier recombination and phonon assisted transitions influenced by defect sites within the oxide and NSi are believed to be the primary factors limiting the QD exciton lifetimes in the heterostructures.
In this work, we present three groups of microcavities: based on selenium compounds only, based on tellurium compounds only, and structures based on mixed selenium and tellurium compounds. We focus on their possible applications in the field of optoe lectronic devices and fundamental physics (VCSELs, narrow range light sources, studies of cavity-polariton electrodynamics) in a range of wavelength from 540 to 760 nm.
341 - C. Gould , S. Mark , K. Pappert 2008
This paper reports on a detailed magnetotransport investigation of the magnetic anisotropies of (Ga,Mn)As layers produced by various sources worldwide. Using anisotropy fingerprints to identify contributions of the various higher order anisotropy ter ms, we show that the presence of both a [100] and a [110] uniaxial anisotropy in addition to the primary ([100] + [010]) anisotropy is common to all medium doped (Ga,Mn)As layers typically used in transport measurement, with the amplitude of these uniaxial terms being characteristic of the individual layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا