ﻻ يوجد ملخص باللغة العربية
The recent study of oxides led to the discovery of several new fascinating physical phenomena. High-temperature superconductivity, colossal magnetoresistance, dilute magnetic doping, or multiferroicity were discovered and investigated in transition-metal oxides, representing a prototype class of strongly correlated electronic systems. This development was accompanied by an enormous progress regarding thin film fabrication. Within the past two decades, epitaxial thin films with crystalline quality approaching semiconductor standards became available using laser molecular beam epitaxy. This evolution is reviewed, particularly with emphasis on transition-metal oxide thin films, their versatile physical properties, and their impact on the field of spintronics. First, the physics of ferromagnetic half-metallic oxides, such as the doped manganites, the double perovskites and magnetite is presented together with possible applications based on magnetic tunnel junctions. Second, the wide bandgap semiconductor zinc oxide is discussed particularly with regard to the controversy of dilute magnetic doping with transition-metal ions and the possibility of realizing p-type conductivity. Third, the field of oxide multiferroics is presented with the recent developments in single-phase multiferroic thin film perovskites as well as in composite multiferroic hybrids.
In this paper, we report the growth of NaxCoO2 thin films by pulsed-laser deposition (PLD). It is shown that the concentration of sodium is very sensitive to the substrate temperature and the target-substrate distance due to the evaporation of sodium
Research on two-dimensional materials has expanded over the past two decades to become a central theme in condensed matter research today. Significant advances have been made in the synthesis and subsequent reassembly of these materials using mechani
The crystal structures of LaAlO3 films grown by pulsed laser deposition on SrTiO3 substrates at oxygen pressure of 10-3 mbar or 10-5 mbar, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our results show t
Two-dimensional (2D) platinum diselenide (PtSe$_2$) has received significant attention for 2D transistor applications due to its high mobility. Here, using molecular beam epitaxy, we investigate the growth of 2D PtSe$_2$ on highly oriented pyrolytic
Mirror twin boundary (MTB) brings unique 1D physics and properties into two-dimensional transition metal dichalcogenides (TMDCs), but they were rarely observed in non-Mo-based TMDCs. Herein, by post-growth Nb doping, high density 4|4E-W and 4|4P-Se M