ﻻ يوجد ملخص باللغة العربية
We address the question whether a singularity in a three-dimensional incompressible inviscid fluid flow can occur in finite time. Analytical considerations and numerical simulations suggest high-symmetry flows being a promising candidate for a finite-time blowup. Utilizing Lagrangian and geometric non-blowup criteria, we present numerical evidence against the formation of a finite-time singularity for the high-symmetry vortex dodecapole initial condition. We use data obtained from high resolution adaptively refined numerical simulations and inject Lagrangian tracer particles to monitor geometric properties of vortex line segments. We then verify the assumptions made by analytical non-blowup criteria introduced by Deng et. al [Commun. PDE 31 (2006)] connecting vortex line geometry (curvature, spreading) to velocity increase to rule out singular behavior.
There are two main strategies for improving the projection-based reduced order model (ROM) accuracy: (i) improving the ROM, i.e., adding new terms to the standard ROM; and (ii) improving the ROM basis, i.e., constructing ROM bases that yield more acc
The Green Nagdhi equations are frequently used as a model of the wave-like behaviour of the free surface of a fluid, or the interface between two homogeneous fluids of differing densities. Here we show that their multilayer extension arises naturally
We investigate the formation of singularities in the incompressible Navier-Stokes equations in $dgeq 2$ dimensions with a fractional Laplacian $| abla |^alpha$. We derive analytically a sufficient but not necessary condition for solutions to remain a
We review the continuous symmetry approach and apply it to find the solution, via the construction of constants of motion and infinitesimal symmetries, of the 3D Euler fluid equations in several instances of interest, without recourse to Noethers the
New aspects of turbulence are uncovered if one considers flow motion from the perspective of a fluid particle (known as the Lagrangian approach) rather than in terms of a velocity field (the Eulerian viewpoint). Using a new experimental technique, ba