ترغب بنشر مسار تعليمي؟ اضغط هنا

On the role of continuous symmetries in the solution of the 3D Euler fluid equations and related models

177   0   0.0 ( 0 )
 نشر من قبل Miguel D. Bustamante
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the continuous symmetry approach and apply it to find the solution, via the construction of constants of motion and infinitesimal symmetries, of the 3D Euler fluid equations in several instances of interest, without recourse to Noethers theorem. We show that the vorticity field is a symmetry of the flow and therefore one can construct a Lie algebra of symmetries if the flow admits another symmetry. For steady Euler flows this leads directly to the distinction of (non-)Beltrami flows: an example is given where the topology of the spatial manifold determines whether the flow admits extra symmetries. Next, we study the stagnation-point-type exact solution of the 3D Euler fluid equations introduced by Gibbon et al. (Physica D, vol.132, 1999, pp.497-510) along with a one-parameter generalisation of it introduced by Mulungye et al. (J. Fluid Mech., vol.771, 2015, pp.468-502). Applying the symmetry approach to these models allows for the explicit integration of the fields along pathlines, revealing a fine structure of blowup for the vorticity, its stretching rate, and the back-to-labels map, depending on the value of the free parameter and on the initial conditions. Finally, we produce explicit blowup exponents and prefactors for a generic type of initial conditions.



قيم البحث

اقرأ أيضاً

In fluid mechanics, a lot of authors have been reporting analytical solutions of Euler and Navier-Stokes equations. But there is an essential deficiency of non-stationary solutions indeed. In our presentation, we explore the case of non-stationary fl ows of the Euler equations for incompressible fluids, which should conserve the Bernoulli-function to be invariant for the aforementioned system. We use previously suggested ansatz for solving of the system of Navier-Stokes equations (which is proved to have the analytical way to present its solution in case of conserving the Bernoulli-function to be invariant for such the type of the flows). Conditions for the existence of exact solution of the aforementioned type for the Euler equations are obtained. The restrictions at choosing of the form of the 3D nonstationary solution for the given constant Bernoulli-function B are considered. We should especially note that pressure field should be calculated from the given constant Bernoulli-function B, if all the components of velocity field are obtained.
Incompressible 3D Euler equations develop high vorticity in very thin pancake-like regions from generic large-scale initial conditions. In this work we propose an exact solution of the Euler equations for the asymptotic pancake evolution. This soluti on combines a shear flow aligned with an asymmetric straining flow, and is characterized by a single asymmetry parameter and an arbitrary transversal vorticity profile. The analysis is based on detailed comparison with numerical simulations performed using a pseudo-spectral method in anisotropic grids of up to 972 x 2048 x 4096.
The Green Nagdhi equations are frequently used as a model of the wave-like behaviour of the free surface of a fluid, or the interface between two homogeneous fluids of differing densities. Here we show that their multilayer extension arises naturally from a framework based on the Euler Poincare theory under an ansatz of columnar motion. The framework also extends to the travelling wave solutions of the equations. We present numerical solutions of the travelling wave problem in a number of flow regimes. We find that the free surface and multilayer waves can exhibit intriguing differences compared to the results of single layer or rigid lid models.
The incompressible three-dimensional ideal flows develop very thin pancake-like regions of increasing vorticity. These regions evolve with the scaling $omega_{max}(t)proptoell(t)^{-2/3}$ between the vorticity maximum and pancake thickness, and provid e the leading contribution to the energy spectrum, where the gradual formation of the Kolmogorov interval $E_{k}propto k^{-5/3}$ is observed for some initial flows [Agafontsev et. al, Phys. Fluids 27, 085102 (2015)]. With the massive numerical simulations, in the present paper we study the influence of initial conditions on the processes of pancake formation and the Kolmogorov energy spectrum development.
We theoretically investigate the effect of random fluctuations on the motion of elongated microswimmers near hydrodynamic transport barriers in externally-driven fluid flows. Focusing on the two-dimensional hyperbolic flow, we consider the effects of translational and rotational diffusion as well as tumbling, i.e. sudden jumps in the swimmer orientation. Regardless of whether diffusion or tumbling are the primary source of fluctuations, we find that noise significantly increases the probability that a swimmer crosses one-way barriers in the flow, which block the swimmer from returning to its initial position. We employ an asymptotic method for calculating the probability density of noisy swimmer trajectories in a given fluid flow, which produces solutions to the time-dependent Fokker-Planck equation in the weak-noise limit. This procedure mirrors the semiclassical approximation in quantum mechanics and similarly involves calculating the least-action paths of a Hamiltonian system derived from the swimmers Fokker-Planck equation. Using the semiclassical technique, we compute (i) the steady-state orientation distribution of swimmers with rotational diffusion and tumbling and (ii) the probability that a diffusive swimmer crosses a one-way barrier. The semiclassical results compare favorably with Monte Carlo calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا