ﻻ يوجد ملخص باللغة العربية
The iron line at 6.4 keV provides a valuable spectral diagnostic in several fields of X-ray astronomy. It often results from the reprocessing of external X-rays by a neutral or low-ionized medium, but it can also be excited by impacts of low-energy cosmic rays. This paper aims to provide signatures allowing identification of radiation from low-energy cosmic rays in X-ray spectra showing the 6.4 keV line. We study in detail the production of nonthermal line and continuum X-rays by interaction of accelerated electrons and ions with a neutral ambient gas. Corresponding models are then applied to XMM-Newton observations of the X-ray emission emanating from the Arches cluster region near the Galactic center. Bright 6.4 keV line structures are observed around the Arches cluster. This emission is very likely produced by cosmic rays. We find that it can result from the bombardment of molecular gas by energetic ions, but probably not by accelerated electrons. Using a model of X-ray production by cosmic-ray ions, we obtain a best-fit metallicity of the ambient medium of 1.7 plus-minus 0.2 times the solar metallicity. A large flux of low-energy cosmic ray ions could be produced in the ongoing supersonic collision between the star cluster and an adjacent molecular cloud. We find that a particle acceleration efficiency in the resulting shock system of a few percent would give enough power in the cosmic rays to explain the luminosity of the nonthermal X-ray emission. Depending on the unknown shape of the kinetic energy distribution of the fast ions above 1 GeV per nucleon, the Arches cluster region may be a source of high-energy gamma-rays detectable with the Fermi Gamma-ray Space Telescope. At present, the X-ray emission prominent in the 6.4 keV Fe line emanating from the Arches cluster region probably offers the best available signature for a source of low-energy hadronic cosmic rays in the Galaxy.
Molecular gas in Arches cloud located near the Arches cluster is one of the emitters of K-$alpha$ line of neutral iron and X-ray continuum in the Galactic center (GC). Similarly to the cloud Sgr B2, another well-known emitter of the iron line in the
Investigations of the energy spectrum as well as the mass composition of cosmic rays in the energy range of PeVto EeV are important for understanding both, the origin of the galactic and the extragalactic cosmic rays. Recently, three modern experimen
We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present
Linearly polarized Balmer line emissions from supernova remnant shocks are studied taking into account the energy loss of the shock owing to the production of nonthermal particles. The polarization degree depends on the downstream temperature and the
Context: Cosmic rays are thought to be accelerated at supernova remnant (SNR) shocks, but conclusive evidence is lacking. Aims: New data from ground-based gamma-ray telescopes and the Large Area Telescope on the Fermi Gamma-ray Space Telescope are us