ﻻ يوجد ملخص باللغة العربية
Context: Cosmic rays are thought to be accelerated at supernova remnant (SNR) shocks, but conclusive evidence is lacking. Aims: New data from ground-based gamma-ray telescopes and the Large Area Telescope on the Fermi Gamma-ray Space Telescope are used to test this hypothesis. A simple model for gamma-ray production efficiency is compared with measured gamma-ray luminosities of SNRs, and the GeV to TeV fluxes ratios of SNRs are examined for correlations with SNR ages. Methods: The supernova explosion is modeled as an expanding spherical shell of material that sweeps up matter from the surrounding interstellar medium (ISM). The accumulated kinetic energy of the shell, which provides the energy available for nonthermal particle acceleration, changes when matter is swept up from the ISM and the SNR shell decelerates. A fraction of this energy is assumed to be converted into the energy of cosmic-ray electrons or protons. Three different particle radiation processes---nuclear pion-production interactions, nonthermal electron bremsstrahlung, and Compton scattering---are considered. Results: The efficiencies for gamma-ray production by these three processes are compared with gamma-ray luminosities of SNRs. Our results suggest that SNRs become less gamma-ray luminous at >~ 10^4 yr, and are consistent with the hypothesis that supernova remnants accelerate cosmic rays with an efficiency of ~10% for the dissipation of kinetic energy into nonthermal cosmic rays. Weak evidence for an increasing GeV to TeV flux ratio with SNR age is found.
It is widely believe that galactic cosmic rays are originated in supernova remnants (SNRs) where they are accelerated by diffusive shock acceleration process at supernova blast waves driven by expanding SNRs. In recent theoretical developments of the
We analyze the results of recent measurements of Galactic cosmic ray (GCRs) energy spectra and the spectra of nonthermal emission from supernova remnants (SNRs) in order to determine their consistency with GCR origin in SNRs. It is shown that the mea
We review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of $sim$2000 yr, focusing in particular on RX J1713.7$-$3946 and RCW 86. Both SNRs
The origin of cosmic rays holds still many mysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that superno
We study the problem of the escape and transport of Cosmic-Rays (CR) from a source embedded in a fully ionised, hot phase of the interstellar medium (HIM). In particular, we model the CR escape and their propagation in the source vicinity taking into