ترغب بنشر مسار تعليمي؟ اضغط هنا

Nested Quantum Walks with Quantum Data Structures

162   0   0.0 ( 0 )
 نشر من قبل Frederic Magniez
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new framework that extends the quantum walk framework of Magniez, Nayak, Roland, and Santha, by utilizing the idea of quantum data structures to construct an efficient method of nesting quantum walks. Surprisingly, only classical data structures were considered before for searching via quantum walks. The recently proposed learning graph framework of Belovs has yielded improved upper bounds for several problems, including triangle finding and more general subgraph detection. We exhibit the power of our framework by giving a simple explicit constructions that reproduce both the $O(n^{35/27})$ and $O(n^{9/7})$ learning graph upper bounds (up to logarithmic factors) for triangle finding, and discuss how other known upper bounds in the original learning graph framework can be converted to algorithms in our framework. We hope that the ease of use of this framework will lead to the discovery of new upper bounds.



قيم البحث

اقرأ أيضاً

Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper we take advantage of the properties of quantum walks to design new secure quantum key distribution sc hemes. In particular, we introduce a secure quantum key-distribution protocol equipped with verification procedures against full man-in-the-middle attacks. Furthermore, we present a one-way protocol and prove its security. Finally, we propose a semi-quantum variation and prove its robustness against eavesdropping.
A quantum walk places a traverser into a superposition of both graph location and traversal spin. The walk is defined by an initial condition, an evolution determined by a unitary coin/shift-operator, and a measurement based on the sampling of the pr obability distribution generated from the quantum wavefunction. Simple quantum walks are studied analytically, but for large graph structures with complex topologies, numerical solutions are typically required. For the quantum theorist, the Gremlin graph traversal machine and language can be used for the numerical analysis of quantum walks on such structures. Additionally, for the graph theorist, the adoption of quantum walk principles can transform what are currently side-effect laden traversals into pure, stateless functional flows. This is true even when the constraints of quantum mechanics are not fully respected (e.g. reversible and unitary evolution). In sum, Gremlin allows both types of theorist to leverage each others constructs for the advancement of their respective disciplines.
We present a general error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. Given any Ising model optimization problem, the encoding replaces each logical qub it by a complete graph of degree $C$, representing the distance of the error-correcting code. A subsequent minor-embedding step then implements the encoding on the underlying hardware graph of the quantum annealer. We demonstrate experimentally that the performance of a D-Wave Two quantum annealing device improves as $C$ grows. We show that the performance improvement can be interpreted as arising from an effective increase in the energy scale of the problem Hamiltonian, or equivalently, an effective reduction in the temperature at which the device operates. The number $C$ thus allows us to control the amount of protection against thermal and control errors, and in particular, to trade qubits for a lower effective temperature that scales as $C^{-eta}$, with $eta leq 2$. This effective temperature reduction is an important step towards scalable quantum annealing.
We report on the experimental realization of electric quantum walks, which mimic the effect of an electric field on a charged particle in a lattice. Starting from a textbook implementation of discrete-time quantum walks, we introduce an extra operati on in each step to implement the effect of the field. The recorded dynamics of such a quantum particle exhibits features closely related to Bloch oscillations and interband tunneling. In particular, we explore the regime of strong fields, demonstrating contrasting quantum behaviors: quantum resonances vs. dynamical localization depending on whether the accumulated Bloch phase is a rational or irrational fraction of 2pi.
127 - Martin Stefanak , Igor Jex 2014
The control of quantum walk is made particularly transparent when the initial state is expressed in terms of the eigenstates of the coin operator. We show that the group-velocity density acquires a much simpler form when expressed in this basis. This allows us to obtain a much deeper understanding of the role of the initial coin state on the dynamics of quantum walks and control it. We find that the eigenvectors of the coin result in an extremal regime of a quantum walk. The approach is illustrated on two examples of quantum walks on a line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا