ﻻ يوجد ملخص باللغة العربية
The Mozart effect refers to scientific data on short-term improvement on certain mental tasks after listening to Mozart, and also to its popularized version that listening to Mozart makes you smarter (Tomatis, 1991; Wikipedia, 2012). Does Mozart effect point to a fundamental cognitive function of music? Would such an effect of music be due to the hedonicity, a fundamental dimension of mental experience? The present paper explores a recent hypothesis that music helps to tolerate cognitive dissonances and thus enabled accumulation of knowledge and human cultural evolution (Perlovsky, 2010, 2012). We studied whether the influence of music is related to its hedonicity and whether pleasant or unpleasant music would influence scholarly test performance and cognitive dissonance. Specific hypotheses evaluated here are that during a test students experience contradictory cognitions that cause cognitive dissonances. If some music helps to tolerate cognitive dissonances, then first, this music should increase the duration during which participants can tolerate stressful conditions while evaluating test choices. Second, this should result in improved performance. These hypotheses are tentatively confirmed in the reported experiments as the agreeable music was correlated with better performance above that under indifferent or unpleasant music. It follows that music likely performs a fundamental cognitive function explaining the origin and evolution of musical ability considered previously a mystery.
Recent advances in biosensors technology and mobile electroencephalographic (EEG) interfaces have opened new application fields for cognitive monitoring. A computable biomarker for the assessment of spontaneous aesthetic brain responses during music
The paper discusses relationships between aesthetics theory and mathematical models of mind. Mathematical theory describes abilities for concepts, emotions, instincts, imagination, adaptation, learning, cognition, language, approximate hierarchy of t
Free will is fundamental to morality, intuition of self, and normal functioning of the society. However, science does not provide a clear logical foundation for this idea. This paper considers the fundamental scientific argument against free will, ca
Embodied cognition states that semantics is encoded in the brain as firing patterns of neural circuits, which are learned according to the statistical structure of human multimodal experience. However, each human brain is idiosyncratically biased, ac
Mathematical approaches to modeling the mind since the 1950s are reviewed. Difficulties faced by these approaches are related to the fundamental incompleteness of logic discovered by K. Godel. A recent mathematical advancement, dynamic logic (DL) ove