ﻻ يوجد ملخص باللغة العربية
We present a layered hybrid-system approach to quantum communication that involves the distribution of a topological cluster state throughout a quantum network. Photon loss and other errors are suppressed by optical multiplexing and entanglement purification. The scheme is scalable to large distances, achieving an end-to-end rate of 1 kHz with around 50 qubits per node. We suggest a potentially suitable implementation of an individual node composed of erbium spins (single atom or ensemble) coupled via flux qubits to a microwave resonator, allowing for deterministic local gates, stable quantum memories, and emission of photons in the telecom regime.
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usual
Quantum repeaters (QRs) provide a way of enabling long distance quantum communication by establishing entangled qubits between remote locations. We investigate a new approach to QRs in which quantum information can be faithfully transmitted via a noi
A set of stabilizer operations augmented by some special initial states known as magic states, gives the possibility of universal fault-tolerant quantum computation. However, magic state preparation inevitably involves nonideal operations that introd
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
Considering the large-scale quantum computer, it is important to know how much quantum computational resources is necessary precisely and quickly. Unfortunately the previous methods so far cannot support a large-scale quantum computing practically an