ﻻ يوجد ملخص باللغة العربية
3D mapping of matter distribution in the universe through the 21 cm radio emission of atomic hydrogen HI is a complementary approach to optical surveys for the study of the Large Scale Structures, in particular for measuring the BAO (Baryon Acoustic Oscillation) scale up to redshifts z < 3, and therefore constraining dark energy parameters. We propose a novel method to map the HI mass distribution in three dimensions in radio, without detecting or identifying individual compact sources. This method would require an instrument with a large instantaneous bandwidth (> 100 MHz) and high sensitivity, while a rather modest angular resolution (~ 10 arcmin) should be sufficient. These requirements can be met by a dense interferometric array or a phased array (FPA) in the focal plane of a large primary reflector, representing a total collecting area of a few thousand square meters with few hundred simultaneous beams covering a 20 to 100 square degrees field of view. We describe the development and qualification of an electronic and data processing system for digital radio interferometry and beam forming suitable for such instruments with several hundred receiver elements.
The 21-cm line of neutral hydrogen (HI) opens a new avenue in our exploration of the Universes structure and evolution. It provides complementary data with different systematics, which aim to improve our current understanding of the $Lambda$CDM model
Using the 21 cm line, observed all-sky and across the redshift range from 0 to 5, the large scale structure of the Universe can be mapped in three dimensions. This can be accomplished by studying specific intensity with resolution ~ 10 Mpc, rather th
Measurement of the spatial distribution of neutral hydrogen via the redshifted 21 cm line promises to revolutionize our knowledge of the epoch of reionization and the first galaxies, and may provide a powerful new tool for observational cosmology fro
We introduce a new Bayesian HI spectral line fitting technique capable of obtaining spectroscopic redshifts for millions of galaxies in radio surveys with the Square Kilometere Array (SKA). This technique is especially well-suited to the low signal-t
Next generation observatories will enable us to study the first billion years of our Universe in unprecedented detail. Foremost among these are 21-cm interferometry with the HERA and the SKA, and high-$z$ galaxy observations with the James Webb Space