ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of free-electron-laser field fluctuations on the frequency response of driven atomic resonances

90   0   0.0 ( 0 )
 نشر من قبل Dr. Georgios M. Nikolopoulos
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effects of field fluctuations on the total yields of Auger electrons, obtained in the excitation of neutral atoms to a core-excited state by means of short-wavelength free-electron-laser pulses. Beginning with a self-contained analysis of the statistical properties of fluctuating free-electron-laser pulses, we analyse separately and in detail the cases of single and double Auger resonances, focusing on fundamental phenomena such as power broadening and ac Stark (Autler-Townes) splitting. In certain cases, field fluctuations are shown to influence dramatically the frequency response of the resonances, whereas in other cases the signal obtained may convey information about the bandwidth of the radiation as well as the dipole moment between Auger states.



قيم البحث

اقرأ أيضاً

We propose a new type of superradiant laser based on a hot atomic beam traversing an optical cavity. We show that the theoretical minimum linewidth and maximum power are competitive with the best ultracoherent clock lasers. Also, our system operates naturally in continuous wave mode, which has been elusive for superradiant lasers so far. Unlike existing ultracoherent lasers, our design is simple and rugged. This makes it a candidate for the first widely accessible ultracoherent laser, as well as the first to realize sought-after applications of ultracoherent lasers in challenging environments.
We present an experimental and theoretical study of phase-dependent interference effects in multi-photon excitation under bichromatic radio-frequency (rf) field. Using an intense rf pulse, we study the interference between the three-photon and one-ph oton transition between the Zeeman sub-levels of the ground state of $^{87}$Rb that allows us to determine the carrier-envelope phase of the fields even for long pulses.
It is shown via theory and simulation that the resonant frequency of a Free Electron Laser may be modulated to obtain an FEL interaction with a frequency bandwidth which is at least an order of magnitude greater than normal FEL operation. The system is described in the linear regime by a summation over exponential gain modes, allowing the amplification of multiple light frequencies simultaneously. Simulation in 3D demonstrates the process for parameters of the UKs CLARA FEL test facility currently under construction. This new mode of FEL operation has close analogies to Frequency Modulation in a conventional cavity laser. This new, wide bandwidth mode of FEL operation scales well for X-ray generation and offers users a new form of high-power FEL output.
We report on reflection spectra of caesium atoms in close vicinity of a nanostructured metallic meta-surface. We show that the hyperfine sub-Doppler spectrum of the $6S_{1/2} - 6P_{3/2}$ resonance transition at 852 nm is strongly affected by the coup ling to the plasmonic resonance of the nanostructure. Fine tuning of dispersion and positions of the atomic lines in the near-field of plasmonic metamaterials could have uses and implications for the atom-based metrology, sensing and the development of atom-on-a-chip devices.
The transition between two distinct mechanisms for the laser-induced field-free orientation of CO molecules is observed via measurements of orientation revival times and subsequent comparison to theoretical calculations. In the first mechanism, which we find responsible for the orientation of CO up to peak intensities of 8 x 10^13 W/cm^2, the molecules are impulsively oriented through the hyperpolarizability interaction. At higher intensities, asymmetric depletion through orientation-selective ionization is the dominant orienting mechanism. In addition to the clear identification of the two regimes of orientation, we propose that careful measurements of the onset of the orientation depletion mechanism as a function of the laser intensity will provide a relatively simple route to calibrate absolute rates of non-perturbative strong-field molecular ionization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا