ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of the Heliocentric dependence of Shock Standoff Distance and Geometry using 2.5D MHD Simulations of CME-driven shocks

100   0   0.0 ( 0 )
 نشر من قبل Neel P. Savani
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast Coronal Mass Ejections (CMEs) and their associated shock fronts between 10Rs and 300Rs. We investigate the relative change in the shock standoff distance, Sd, as a fraction of the CME radial half-width, Dob (i.e. Sd/Dob). Previous hydrodynamic studies have related the shock standoff distance for Earths magnetosphere to the density compression ratio (DR,Ru/Rd) measured across the bow shock (Spreiter, Summers and Alksne 1966). The DR coefficient, kdr, which is the proportionality constant between the relative standoff distance (Sd/Dob) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CMEs leading edge. We find that a value of 0.8+-0.1 is more appropriate for small heliocentric distances (<30Rs) which corresponds to the spherical geometry of a magnetosphere presented by Seiff (1962). As the CME propagates its cross section becomes more oblate and the kdr value increases linearly with heliocentric distance, such that kdr= 1.1 is most appropriate at a heliocentric distance of about 80Rs. For terrestrial distances (215Rs) we estimate kdr= 1.8+-0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earths magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.



قيم البحث

اقرأ أيضاً

We determine the coronal magnetic field strength in the heliocentric distance range 6 to 23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection (CME) im aged by white-light coronagraphs. Assuming the adiabatic index, we determine the Alfven Mach number, and hence the Alfven speed in the ambient medium using the measured shock speed. By measuring the upstream plasma density using polarization brightness images, we finally get the magnetic field strength upstream of the shock. The estimated magnetic field decreases from ~48 mG around 6 Rs to 8 mG at 23 Rs. The radial profile of the magnetic field can be described by a power law in agreement with other estimates at similar heliocentric distances.
Recent detections of high-energy $gamma$-rays from behind-the-limb (BTL) solar flares by the emph{Fermi $gamma$-ray Space Telescope} pose a puzzle and challenge on the particle acceleration and transport mechanisms. In such events, the $gamma$-ray em ission region is located away from the BTL flare site by up to tens of degrees in heliogrpahic longitude. It is thus hypothesized that particles are accelerated at the shock driven by the coronal mass ejection (CME) and then travel from the shock downstream back to the front side of the Sun to produce the observed $gamma$-rays. To test this scenario, we performed data-driven, global magnetohydrodynamics simulations of the CME associated with a well-observed BTL flare on 2014 September 1. We found that part of the CME-driven shock develops magnetic connectivity with the $gamma$-ray emission region, facilitating transport of particles back to the Sun. Moreover, the observed increase in $gamma$-ray flux is temporally correlated with (1) the increase of the shock compression ratio and (2) the presence of a quasi-perpendicular shock over the area that is magnetically connected to the $gamma$-ray emitting region, both conditions favoring the diffusive shock acceleration (DSA) of particles. These results support the above hypothesis and can help resolve another puzzle, i.e., long-duration (up to 20 hours) $gamma$-rays flares. We suggest that, in addition to DSA, stochastic acceleration by plasma turbulence may also play a role, especially in the shock downstream region and during the early stage when the shock Alfv{e}n Mach number is small.
Coronal waves exist ubiquitously in the solar atmosphere. They are important not only in their own rich physics but also essential candidates of triggering magnetic eruptions in the remote. However, the later mechanism has never been directly confirm ed. By revisiting the successive eruptions on 2012 March 7, fast-mode shocks are identified to account for the X5.4 flare-related EUV wave with a velocity of 550 km/s, and appeared faster than 2060$pm$270 km/s at the front of the corresponding coronal mass ejection in the slow-rising phase. They not only propagated much faster than the local Alfven speed of about 260 km/s, but also simultaneously accompanied by type II radio burst, i.e., a typical feature of shock wave. The observations show that the shock wave disturbs the coronal loops C1 connecting active regions (ARs) 11429 and 11430, which is neighboring a null point region. Following a 40-min-oscillation, an external magnetic reconnection (EMR) occurred in the null point region. About 10 min later, a large-scale magnetic flux rope (MFR) overlaid by the C1 became unstable and erupted quickly. It is thought that the fast-mode shock triggered EMR in the null point region and caused the subsequent eruptions. This scenario is observed directly for the first time, and provides new hint for understanding the physics of solar activities and eruptions.
X-ray observations of merging clusters provide many examples of bow shocks leading merging subclusters. While the Mach number of a shock can be estimated from the observed density jump using Rankine-Hugoniot condition, it reflects only the velocity o f the shock itself and is generally not equal to the velocity of the infalling subcluster dark matter halo or to the velocity of the contact discontinuity separating gaseous atmospheres of the two subclusters. Here we systematically analyze additional information that can be obtained by measuring the standoff distance, i.e. the distance between the leading edge of the shock and the contact discontinuity that drives this shock. The standoff distance is influenced by a number of additional effects, e.g. (1) the gravitational pull of the main cluster (causing acceleration/deceleration of the infalling subcluster), (2) the density and pressure gradients of the atmosphere in the main cluster, (3) the non-spherical shape of the subcluster, and (4) projection effects. The first two effects tend to bias the standoff distance in the same direction, pushing the bow shock closer to (farther away from) the subcluster during the pre- (post-)merger stages. Particularly, in the post-merger stage, the shock could be much farther away from the subcluster than predicted by a model of a body moving at a constant speed in a uniform medium. This implies that a combination of the standoff distance with measurements of the Mach number from density/temperature jumps can provide important information on the merger, e.g. differentiating between the pre- and post-merger stages.
This study examines the tail disconnection event on April 20, 2007 on comet 2P/Encke, caused by a coronal mass ejection (CME) at a heliocentric distance of 0.34 AU. During their interaction, both the CME and the comet are visible with high temporal a nd spatial resolution by the STEREO-A spacecraft. Previously, only current sheets or shocks have been accepted as possible reasons for comet tail disconnections, so it is puzzling that the CME caused this event. The MHD simulation presented in this work reproduces the interaction process and demonstrates how the CME triggered a tail disconnection in the April 20 event. It is found that the CME disturbs the comet with a combination of a $180^circ$ sudden rotation of the interplanetary magnetic field (IMF), followed by a $90^circ$ gradual rotation. Such an interpretation applies our understanding of solar wind-comet interactions to determine the textit{in situ} IMF orientation of the CME encountering Encke.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا